Selective and constructive mechanisms contribute to neural circuit formation in the barrel cortex of the developing rat

Abstract

The cellular strategy leading to formation of neuronal circuits in the rodent barrel cortex is still a matter of controversy. Both selective and constructive mechanisms have been proposed. The selective mechanism involves an overproduction of neuronal processes and synapses followed by activity dependent pruning. Conversely, a constructive mechanism would increase the number of axons, dendrites, and synapses during development to match functionality. In order to discern the contributions of these two mechanisms in establishing a neuronal circuit in the somatosensory cortex, morphometric analysis of dendritic and axonal arbor growth was performed. Also, the number of synapses was followed by electron microscopy during the first month of life. We observed that axonal and dendritic arbors retracted distal branches, and elongated proximal branches, resulting in increased arbor complexity. This neuronal remodeling was accompanied by the steady increase in the number of synapses within barrel hollows. Similarly, the content of molecular markers for dendrites, axons and synapses also increased during this period. Finally, cytochrome oxidase activity rose with age in barrels indicating that the arbors became more complex while synapse density and metabolic demands increased. Our results support the simultaneous use of both selective and constructive mechanisms in establishing the barrel cortex circuitry.

Share and Cite:

Uribe-Querol, E. , Martínez-Martínez, E. , Hernández, L. , Cortés, P. , Merchant-Larios, H. and Gutiérrez-Ospinac, G. (2013) Selective and constructive mechanisms contribute to neural circuit formation in the barrel cortex of the developing rat. Advances in Bioscience and Biotechnology, 4, 785-797. doi: 10.4236/abb.2013.47103.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Purves, D. (1988) Body and brain: A trophic theory of neural connections. First Harvard University Press, Boston.
[2] Crowley, J.C. and Katz, L.C. (2000) Early development of ocular dominance columns. Science, 290, 1321-1324. doi:10.1126/science.290.5495.1321
[3] Quartz, S.R. and Sejnowski, T.J. (1997) The neural basis of cognitive development: A constructivist manifesto. The Behavioral and Brain Sciences, 20, 537-556; Discussion 556-596. doi:10.1017/S0140525X97001581
[4] Fox, K. (2008) Barrel cortex. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511541636
[5] Micheva, K.D. and Beaulieu, C. (1997) Development and plasticity of the inhibitory neocortical circuitry with an emphasis on the rodent barrel field cortex: A review. Canadian Journal of Physiology and Pharmacology, 75, 470-478. doi:10.1139/y97-032
[6] Micheva, K.D. and Beaulieu, C. (1996) Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. The Journal of Comparative Neurology, 373, 340-354. doi:10.1002/(SICI)1096-9861(19960923)373:3<340::AID-CNE3>3.0.CO;2-2
[7] White, E.L. (1976) Ultrastructure and synaptic contacts in barrels of mouse SI cortex. Brain Research, 105, 229-251. doi:10.1016/0006-8993(76)90423-6
[8] Senft, S.L. and Woolsey, T.A. (1991) Growth of thalamic afferents into mouse barrel cortex. Cerebral Cortex, 1, 308-335. doi:10.1093/cercor/1.4.308
[9] Rebsam, A., Seif, I. and Gaspar, P. (2002) Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: A study of normal and monoamine oxidase a knock-out mice. The Journal of Neuroscience, 22, 8541-8552.
[10] Killackey, H.P. and Belford, G.R. (1979) The formation of afferent patterns in the somatosensory cortex of the neonatal rat. The Journal of Comparative Neurology, 183, 285-303. doi:10.1002/cne.901830206
[11] Agmon, A., Yang, L.T., Jones, E.G. and O’Dowd, D.K. (1995) Topological precision in the thalamic projection to neonatal mouse barrel cortex. The Journal of Neuroscience, 15, 549-561.
[12] Agmon, A., Yang, L.T., O’Dowd, D.K. and Jones, E.G. (1993) Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex. The Journal of Neuroscience, 13, 5365-5382.
[13] National Research Council of the National Academies (2011) Guide for the care and use of laboratory animals. 8th Edition, The National Academies Press, Washington DC.
[14] Ramón y Cajal, S. and Castro y Pascual, F. (1933) Micrographic technique elements of the nervous system. Tipografía Artística, Madrid.
[15] Smith Jr., T.G., Lange, G.D. and Marks, W.B. (1996) Fractal methods and results in cellular morphology— Dimensions, lacunarity and multifractals. Journal of Neuroscience Methods, 69, 123-136. doi:10.1016/S0165-0270(96)00080-5
[16] Cuello, A.C., Priestley, J.V. and Sofroniew, M.V. (1983) Immunocytochemistry and neurobiology. Quarterly Journal of Experimental Physiology, 68, 545-578.
[17] Tabor, K.M., Wong, R.O. and Rubel, E.W. (2011) Topography and morphology of the inhibitory projection from superior olivary nucleus to nucleus laminaris in chickens (Gallus gallus). The Journal of Comparative Neurology, 519, 358-375. doi:10.1002/cne.22523
[18] Caceres, A., Binder, L.I., Payne, M.R., Bender, P., Rebhun, L. and Steward, O. (1984) Differential subcellular localization of tubulin and the microtubule-associated protein MAP2 in brain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies. The Journal of Neuroscience, 4, 394-410.
[19] Budinger, E., Heil, P. and Scheich, H. (2000) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. The European Journal of Neuroscience, 12, 2425-2451. doi:10.1046/j.1460-9568.2000.00142.x
[20] Freria, C.M., Zanon, R.G., Santos, L.M. and Oliveira, A.L. (2010) Major histocompatibility complex class I expression and glial reaction influence spinal motoneuron synaptic plasticity during the course of experimental autoimmune encephalomyelitis. The Journal of Comparative Neurology, 518, 990-1007. doi:10.1002/cne.22259
[21] King, A.E., Chung, R.S., Vickers, J.C. and Dickson, T.C. (2006) Localization of glutamate receptors in developing cortical neurons in culture and relationship to susceptibility to excitotoxicity. The Journal of Comparative Neurology, 498, 277-294. doi:10.1002/cne.21053
[22] Naisbitt, S., et al. (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA recaptor/PSD-95/GKAP complex and cortactin. Neuron, 23, 569-582. doi:10.1016/S0896-6273(00)80809-0
[23] Strominger, R.N. and Woolsey, T.A. (1987) Templates for locating the whisker area in fresh flattened mouse and rat cortex. Journal of Neuroscience Methods, 22, 113-118. doi:10.1016/0165-0270(87)90004-5
[24] Ossipow, V., Laemmli, U.K. and Schibler, U. (1993) A simple method to renature DNA-binding proteins separated by SDS-polyacrylamide gel electrophoresis. Nucleic Acids Research, 21, 6040-6041. doi:10.1093/nar/21.25.6040
[25] Schagger, H. and Von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368-379. doi:10.1016/0003-2697(87)90587-2
[26] Wong-Riley, M.T. (1989) Cytochrome oxidase: An endogenous metabolic marker for neuronal activity. Trends in Neuroscience, 12, 94-101. doi:10.1016/0166-2236(89)90165-3
[27] Zaccaria, K.J. and McCasland, J.S. (2012) Emergence of layer IV barrel cytoarchitecture is delayed in somatosensory cortex of GAP-43 deficient mice following delayed development of dendritic asymmetry. Somatosensory & Motor Research, 29, 77-88. doi:10.3109/08990220.2012.686936
[28] Szebenyi, G., et al. (2005) Activity-driven dendritic remodeling requires microtubule-associated protein 1A. Current Biology, 15, 1820-1826. doi:10.1016/j.cub.2005.08.069
[29] Kramer, A.P. and Kuwada, J.Y. (1983) Formation of the receptive fields of leech mechanosensory neurons during embryonic development. The Journal of Neuroscience, 3, 2474-2486.
[30] Wang, H. and Macagno, E.R. (1997) The establishment of peripheral sensory arbors in the leech: In vivo timelapse studies reveal a highly dynamic process. The Journal of Neuroscience, 17, 2408-2419.
[31] Jontes, J.D., Buchanan, J. and Smith, S.J. (2000) Growth cone and dendrite dynamics in zebrafish embryos: Early events in synaptogenesis imaged in vivo. Nature Neuroscience, 3, 231-237. doi:10.1038/72936
[32] Hua, J.Y. and Smith, S.J. (2004) Neural activity and the dynamics of central nervous system development. Nature Neuroscience, 7, 327-332. doi:10.1038/nn1218
[33] Sotelo, C. and Dusart, I. (2009) Intrinsic versus extrinsic determinants during the development of Purkinje cell dendrites. Neuroscience, 162, 589-600. doi:10.1016/j.neuroscience.2008.12.035
[34] Berry, M. and Bradley, P. (1976) The growth of the dendritic trees of Purkinje cells in irradiated agranular cerebellar cortex. Brain Research, 116, 361-387. doi:10.1016/0006-8993(76)90487-X
[35] Sadler, M. and Berry, M. (1984) Remodelling during development of the Purkinje cell dendritic tree in the mouse. Proceedings of the Royal Society of London: Series B, 221, 349-367. doi:10.1098/rspb.1984.0037
[36] Gutierrez-Ospina, G., Calikoglu, A.S., Ye, P. and D’Ercole, A.J. (1996) In vivo effects of insulin-like growth factor-I on the development of sensory pathways: Analysis of the primary somatic sensory cortex (S1) of transgenic mice. Endocrinology, 137, 5484-5492. doi:10.1210/en.137.12.5484
[37] Valle-Leija, P., Blanco-Hernandez, E., Drucker-Colin, R., Gutierrez-Ospina, G. and Vidaltamayo, R. (2012) Supernumerary formation of olfactory glomeruli induced by chronic odorant exposure: A constructivist expression of neural plasticity. PLoS One, 7, e35358. doi:10.1371/journal.pone.0035358
[38] Bourgeois, J.P. (2005) Brain synaptogenesis and epigenesis. Synaptogenèses et épigenèses cérébrales. Médicine Science, 21, 428-433. doi:10.1051/medsci/2005214428
[39] Bourgeois, J.P., Goldman-Rakic, P.S. and Rakic, P. (1994) Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex, 4, 78-96. doi:10.1093/cercor/4.1.78
[40] Withers, G.S., James, C.D., Kingman, C.E., Craighead, H.G. and Banker, G.A. (2006) Effects of substrate geometry on growth cone behavior and axon branching. Journal of Neurobiology, 66, 1183-1194. doi:10.1002/neu.20298
[41] Rao, A., Cha, E.M. and Craig, A.M. (2000) Mismatched appositions of presynaptic and postsynaptic components in isolated hippocampal neurons. The Journal of Neuroscience, 20, 8344-8353.
[42] Narboux-Neme, N., et al. (2012) Neurotransmitter release at the thalamocortical synapse instructs barrel formation but not axon patterning in the somatosensory cortex. The Journal of Neuroscience, 32, 6183-6196. doi:10.1523/JNEUROSCI.0343-12.2012
[43] Haydon, P.G., McCobb, D.P. and Kater, S.B. (1987) The regulation of neurite outgrowth, growth cone motility, and electrical synaptogenesis by serotonin. Journal of Neurobiology, 18, 197-215. doi:10.1002/neu.480180206
[44] Haydon, P.G. and Zoran, M.J. (1994) Retrograde regulation of presynaptic development during synaptogenesis. Journal of Neurobiology, 25, 694-706. doi:10.1002/neu.480250609
[45] Shelly, M., Lim, B.K., Cancedda, L., Heilshorn, S.C., Gao, H. and Poo, M.M. (2010) Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science, 327, 547-552. doi:10.1126/science.1179735
[46] Ahmari, S.E., Buchanan, J. and Smith, S.J. (2000) Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neuroscience, 3, 445-451. doi:10.1038/74814
[47] Friedman, H.V., Bresler, T., Garner, C.C. and Ziv, N.E. (2000) Assembly of new individual excitatory synapses: Time course and temporal order of synaptic molecule recruitment. Neuron, 27, 57-69. doi:10.1016/S0896-6273(00)00009-X
[48] Feldman, D.E., Nicoll, R.A. and Malenka, R.C. (1999) Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. Journal of Neurobiology, 41, 92-101. doi:10.1002/(SICI)1097-4695(199910)41:1<92::AID-NEU12>3.0.CO;2-U
[49] Itami, C., Mizuno, K., Kohno, T. and Nakamura, S. (2000) Brain-derived neurotrophic factor requirement for activity-dependent maturation of glutamatergic synapse in developing mouse somatosensory cortex. Brain Research, 857, 141-150. doi:10.1016/S0006-8993(99)02352-5
[50] Petralia, R.S., et al. (1999) Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nature Neuroscience, 2, 31-36. doi:10.1038/4532
[51] Jontes, J.D. and Smith, S.J. (2000) Filopodia, spines, and the generation of synaptic diversity. Neuron, 27, 11-14. doi:10.1016/S0896-6273(00)00003-9
[52] Mierau, S.B., Meredith, R.M., Upton, A.L. and Paulsen, O. (2004) Dissociation of experience-dependent and -independent changes in excitatory synaptic transmission during development of barrel cortex. Proceedings of the National Academy of Sciences of the United States of America, 101, 15518-15523. doi:10.1073/pnas.0402916101
[53] Okabe, S., Miwa, A. and Okado, H. (2001) Spine formation and correlated assembly of presynaptic and postsynaptic molecules. The Journal of Neuroscience, 21, 61056114.
[54] Hasbani, M.J., Schlief, M.L., Fisher, D.A. and Goldberg, M.P. (2001) Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact. The Journal of Neuroscience, 21, 2393-2403.
[55] Niell, C.M. and Smith, S.J. (2005) Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron, 45, 941-951. doi:10.1016/j.neuron.2005.01.047
[56] Meyer, M.P. and Smith, S.J. (2006) Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. The Journal of Neuroscience, 26, 3604-3614. doi:10.1523/JNEUROSCI.0223-06.2006
[57] Bailey, C.H. and Kandel, E.R. (1993) Structural changes accompanying memory storage. Annual Review of Physiology, 55, 397-426. doi:10.1146/annurev.ph.55.030193.002145
[58] Erzurumlu, R.S. and Kind, P.C. (2001) Neural activity: Sculptor of “barrels” in the neocortex. Trends in Neuroscience, 24, 589-595. doi:10.1016/S0166-2236(00)01958-5
[59] Wu, C.C. and Gonzalez, M.F. (1997) Functional development of the vibrissae somatosensory system of the rat: (14C) 2-deoxyglucose metabolic mapping study. The Journal of Comparative Neurology, 384, 323-336. doi:10.1002/(SICI)1096-9861(19970804)384:3<323::AID-CNE1>3.0.CO;2-5
[60] Melzer, P., Welker, E., Dorfl, J. and Van der Loos, H. (1994) Maturation of the neuronal metabolic response to vibrissa stimulation in the developing whisker-to-barrel pathway of the mouse. Developmental Brain Research, 77, 227-250. doi:10.1016/0165-3806(94)90199-6
[61] Mosconi, T., Woolsey, T.A. and Jacquin, M.F. (2010) Passive vs. active touch-induced activity in the developing whisker pathway. The European Journal of Neuroscience, 32, 1354-1363. doi:10.1111/j.1460-9568.2010.07396.x
[62] Landers, M.S. and Sullivan, R.M. (1999) Vibrissaeevoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex. The Journal of Neuroscience, 19, 5131-5137.
[63] McCasland, J.S. and Hibbard, L.S. (1997) GABAergic neurons in barrel cortex show strong, whisker-dependent metabolic activation during normal behavior. The Journal of Neuroscience, 17, 5509-5527.
[64] Jiang, Q. and Wakerley, J.B. (1997) The milk-ejection reflex in the peri-partum rat: Effects of oestradiol and progesterone on basal milk-ejection frequency and the facilitatory response to central oxytocin. Journal of Neuroendocrinol, 9, 9-16. doi:10.1046/j.1365-2826.1997.00602.x
[65] Armstrong-James, M. and Callahan, C.A. (1991) Thalamo-cortical processing of vibrissal information in the rat. II. Spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of S1 cortical “barrel” neurones. The Journal of Comparative Neurology, 303, 211-224. doi:10.1002/cne.903030204
[66] Uribe-Querol, E., et al. (2005) Metabolic indices shift in the hypothalamic-neurohypophysial system during lactation: Implications for interpreting their relationship with neuronal activity. Neuroscience, 134, 1217-1222. doi:10.1016/j.neuroscience.2005.05.059

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.