Rethinking cytokine function during hepatitis A and hepatitis C infections

Abstract

Hepatitis A virus (HAV) and hepatitis C virus (HCV) are both viruses with hepatotropic lifestyles. HAV induces an acute infection that results in the elimination of the virus by the host whereas HCV is typically able to establish a persistent infection that may result in cirrhosis and hepatocellular carcinoma. The mechanisms responsible for this difference are unknown. However, given HAV and HCV are both non-cytophatic viruses, the observed symptoms and liver injury during the infections are the result of specific immune responses under the control of cytokines. Thus, the production of cytokines during hepatotropic viral infections may constitute a mechanism leading to different outcomes. Therefore, understanding the differences in the cytokine patterns induced in response to HAV and HCV is likely to provide important insights into the cytokine-mediated mechanisms underlying the long-term persistence of HCV, the broad spectrum of clinical manifestations induced by HAV and the resolution of HAV infection during the acute phase. Herein, we focus on discoveries that hold promise in identifying cytokines as therapeutic targets for the treatment of viral hepatitis.

Share and Cite:

Fierro, N. , Castro-Garcia, F. and Panduro, A. (2013) Rethinking cytokine function during hepatitis A and hepatitis C infections. Advances in Bioscience and Biotechnology, 4, 13-18. doi: 10.4236/abb.2013.47A1003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Panduro, A., Escobedo Melendez, G., Fierro, N.A., Ruiz Madrigal, B., Zepeda-Carrillo, E.A. and Roman, S. (2011) Epidemiology of viral hepatitis in Mexico. Salud Publica de Mexico, 53, S37-S45.
[2] Costa-Mattioli, M., Cristina, J., Romero, H., Perez-Bercof, R., Casane, D., Colina, R., Garcia, L., Vega, I., Glikman, G., Romanowsky, V., et al. (2002) Molecular evolution of hepatitis A virus: A new classification based on the complete VP1 protein. Journal of Virology, 76, 95169525. doi:10.1128/JVI.76.18.9516-9525.2002
[3] Escobedo-Melendez, G., Fierro, N.A., Roman, S., Maldonado-Gonzalez, M., Zepeda-Carrillo, E. and Panduro, A. (2012) Prevalence of hepatitis A, B and C serological markers in children from western Mexico. Annals of Hepatology, 11, 194-201.
[4] Hussain, Z., Husain, S.A., Almajhdi, F.N. and Kar, P. (2011) Immunological and molecular epidemiological characteristics of acute and fulminant viral hepatitis A. Virology Journal, 8, 254. doi:10.1186/1743-422X-8-254
[5] Jacobsen, K.H. and Wiersma, S.T. (2010) Hepatitis A virus seroprevalence by age and world region, 1990 and 2005. Vaccine, 28, 6653-6657. doi:10.1016/j.vaccine.2010.08.037
[6] Lanford, R.E., Feng, Z., Chavez, D., Guerra, B., Brasky, K.M., Zhou, Y., Yamane, D., Perelson, A.S., Walker, C.M. and Lemon, S.M. (2011) Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proceedings of the National Academy of Sciences of the United States of America, 108, 11223-11228. doi:10.1073/pnas.1101939108
[7] Rouse, B.T. and Sehrawat, S. (2010) Immunity and immunopathology to viruses: What decides the outcome? Nature reviews. Immunology, 10, 514-526. doi:10.1038/nri2802
[8] Charo, I.F. and Ransohoff, R.M. (2006) The many roles of chemokines and chemokine receptors in inflammation. The New England Journal of Medicine, 354, 610-621. doi:10.1056/NEJMra052723
[9] Rehermann, B. and Nascimbeni, M. (2005) Immunology of hepatitis B virus and hepatitis C virus infection. Nature reviews. Immunology, 5, 215-229. doi:10.1038/nri1573
[10] Buonaguro, L., Petrizzo, A., Tornesello, M.L. and Buonaguro, F.M. (2012) Innate immunity and hepatitis C virus infection: A microarray’s view. Infectious Agents and Cancer, 7, 7. doi:10.1186/1750-9378-7-7
[11] Billerbeck, E., Bottler, T. and Thimme, R. (2007) Regulatory T cells in viral hepatitis. World Journal of Gastroenterology, 13, 4858-4864.
[12] Lauer, G.M., Barnes, E., Lucas, M., Timm, J., Ouchi, K., Kim, A.Y., Day, C.L., Robbins, G.K., Casson, D.R., Reiser, M., et al. (2004) High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection. Gastroenterology, 127, 924-936. doi:10.1053/j.gastro.2004.06.015
[13] Soghoian, D.Z. and Streeck, H. (2010) Cytolytic CD4(+) T cells in viral immunity. Expert Review of Vaccines, 9, 1453-1463. doi:10.1586/erv.10.132
[14] Dustin, L.B. and Charles, E.D. (2012) Primary, postprimary and non-specific immunoglobulin M responses in HCV infection. Antiviral Therapy, 17, 1449-1452. doi:10.3851/IMP2222
[15] He, X.S. (2006) Regulation of adaptive immunity by HCV. In Tan, S.L., Ed., Hepatitis C viruses: Genomes and Molecular Biology, Norfolk, UK.
[16] Hiroishi, K., Eguchi, J., Ishii, S., Hiraide, A., Sakaki, M., Doi, H., Omori, R. and Imawari, M. (2010) Immune response of cytotoxic T lymphocytes and possibility of vaccine development for hepatitis C virus infection. Journal of Biomedicine & Biotechnology, 2010, 263-810. doi:10.1155/2010/263810
[17] Giron-Gonzalez, J.A., Martinez-Sierra, C., Rodriguez-Ramos, C., Macias, M.A., Rendon, P., Diaz, F., FernandezGutierrez, C. and Martin-Herrera, L. (2004) Implication of inflammation-related cytokines in the natural history of liver cirrhosis. Liver International: Official Journal of the International Association for the Study of the Liver, 24, 437-445. doi:10.1111/j.1478-3231.2004.0951.x
[18] Racanelli, V. and Rehermann, B. (2006) The liver as an immunological organ. Hepatology, 43, S54-S62. doi:10.1002/hep.21060
[19] Larrubia, J.R., Benito-Martinez, S., Calvino, M., Sanzde-Villalobos, E. and Parra-Cid, T. (2008) Role of chemokines and their receptors in viral persistence and liver damage during chronic hepatitis C virus infection. World Journal of Gastroenterology, 14, 7149-7159. doi:10.3748/wjg.14.7149
[20] Nattermann, J., Nischalke, H.D., Feldmann, G., Ahlenstiel, G., Sauerbruch, T. and Spengler, U. (2004) Binding of HCV E2 to CD81 induces RANTES secretion and internalization of CC chemokine receptor 5. Journal of Viral Hepatitis, 11, 519-526. doi:10.1111/j.1365-2893.2004.00545.x
[21] Edlich, B., Ahlenstiel, G., Zabaleta Azpiroz, A., Stoltzfus, J., Noureddin, M., Serti, E., Feld, J.J., Liang, T.J., Rotman, Y. and Rehermann, B. (2012) Early changes in interferon signaling define natural killer cell response and refractoriness to interferon-based therapy of hepatitis C patients. Hepatology, 55, 39-48. doi:10.1002/hep.24628
[22] Heim, M.H. (2012) Interferons and hepatitis C virus. Swiss Medical Weekly, 142, w13586.
[23] Li, K., Foy, E., Ferreon, J.C., Nakamura, M., Ferreon, A.C., Ikeda, M., Ray, S.C., Gale Jr., M. and Lemon, S.M. (2005) Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proceedings of the National Academy of Sciences of the United States of America, 102, 2992-2997. doi:10.1073/pnas.0408824102
[24] Maheshwari, A., Ray, S. and Thuluvath, P.J. (2008) Acute hepatitis C. Lancet, 372, 321-332. doi:10.1016/S0140-6736(08)61116-2
[25] Jinushi, M., Takehara, T., Tatsumi, T., Kanto, T., Miyagi, T., Suzuki, T., Kanazawa, Y., Hiramatsu, N. and Hayashi, N. (2004) Negative regulation of NK cell activities by inhibitory receptor CD94/NKG2A leads to altered NK cellinduced modulation of dendritic cell functions in chronic hepatitis C virus infection. Journal of Immunology, 173, 6072-6081.
[26] Ferrari, C., Penna, A., Bertoletti, A., Valli, A., Antoni, A.D., Giuberti, T., Cavalli, A., Petit, M.A. and Fiaccadori, F. (1990) Cellular immune response to hepatitis B virusencoded antigens in acute and chronic hepatitis B virus infection. Journal of Immunology, 145, 3442-3449.
[27] Thimme, R., Oldach, D., Chang, K.M., Steiger, C., Ray, S.C. and Chisari, F.V. (2001) Determinants of viral clearance and persistence during acute hepatitis C virus infection. The Journal of Experimental Medicine, 194, 13951406. doi:10.1084/jem.194.10.1395
[28] Urbani, S., Boni, C., Missale, G., Elia, G., Cavallo, C., Massari, M., Raimondo, G. and Ferrari, C. (2002) Virusspecific CD8+ lymphocytes share the same effector-memory phenotype but exhibit functional differences in acute hepatitis B and C. Journal of Virology, 76, 1242312434. doi:10.1128/JVI.76.24.12423-12434.2002
[29] Accapezzato, D., Francavilla, V., Paroli, M., Casciaro, M., Chircu, L.V., Cividini, A., Abrignani, S., Mondelli, M.U. and Barnaba, V. (2004) Hepatic expansion of a virusspecific regulatory CD8(+) T cell population in chronic hepatitis C virus infection. The Journal of Clinical Investigation, 113, 963-972.
[30] Sugimoto, K., Ikeda, F., Stadanlick, J., Nunes, F.A., Alter, H.J. and Chang, K.M. (2003) Suppression of HCV-specific T cells without differential hierarchy demonstrated ex vivo in persistent HCV infection. Hepatology, 38, 1437-1448.
[31] Cuthbert, J.A. (2001) Hepatitis A: Old and new. Clinical Microbiology Reviews, 14, 38-58. doi:10.1128/CMR.14.1.38-58.2001
[32] Fensterl, V., Grotheer, D., Berk, I., Schlemminger, S., Vallbracht, A. and Dotzauer, A. (2005). Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon. Journal of Virology, 79, 1096810977. doi:10.1128/JVI.79.17.10968-10977.2005
[33] Martin, A. and Lemon, S.M. (2006) Hepatitis A virus: From discovery to vaccines. Hepatology, 43, S164-S172. doi:10.1002/hep.21052
[34] Knosp, C.A. and Johnston, J.A. (2012) Regulation of CD4+ T-cell polarization by suppressor of cytokine signalling proteins. Journal of Immunology, 135, 101-111. doi:10.1111/j.1365-2567.2011.03520.x
[35] Zhou, Y., Callendret, B., Xu, D., Brasky, K.M., Feng, Z., Hensley, L.L., Guedj, J., Perelson, A.S., Lemon, S.M., Lanford, R.E., et al. (2012) Dominance of the CD4(+) T helper cell response during acute resolving hepatitis A virus infection. The Journal of Experimental Medicine, 209, 1481-1492. doi:10.1084/jem.20111906
[36] Fierro, N.A., Escobedo-Melendez, G., De Paz, L., Realpe, M., Roman, S. and Panduro, A. (2012) Cytokine expression profiles associated with distinct clinical courses in hepatitis A virus-infected children. The Pediatric Infectious Disease Journal, 31, 870-871. doi:10.1097/INF.0b013e318258e808
[37] Feigelstock, D., Thompson, P., Mattoo, P., Zhang, Y. and Kaplan, G.G. (1998) The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor. Journal of Virology, 72, 6621-6628.
[38] Nakajima, T., Wooding, S., Satta, Y., Jinnai, N., Goto, S., Hayasaka, I., Saitou, N., Guan-Jun, J., Tokunaga, K., Jorde, L.B., et al. (2005) Evidence for natural selection in the HAVCR1 gene: High degree of amino-acid variability in the mucin domain of human HAVCR1 protein. Genes and Immunity, 6, 398-406. doi:10.1038/sj.gene.6364215
[39] Silberstein, E., Konduru, K. and Kaplan, G.G. (2009) The interaction of hepatitis A virus (HAV) with soluble forms of its cellular receptor 1 (HAVCR1) share the physiological requirements of infectivity in cell culture. Virology Journal, 6, 175. doi:10.1186/1743-422X-6-175
[40] Freeman, G.J., Casasnovas, J.M., Umetsu, D.T. and DeKruyff, R.H. (2010) TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunological Reviews, 235, 172-189.
[41] Lee, J., Phong, B., Egloff, A.M. and Kane, L.P. (2011) TIM polymorphisms—Genetics and function. Genes and Immunity, 12, 595-604. doi:10.1038/gene.2011.75
[42] Rodriguez-Manzanet, R., DeKruyff, R., Kuchroo, V.K. and Umetsu, D.T. (2009). The costimulatory role of TIM molecules. Immunological Reviews, 229, 259-270. doi:10.1111/j.1600-065X.2009.00772.x
[43] Manangeeswaran, M., Jacques, J., Tami, C., Konduru, K., Amharref, N., Perrella, O., Casasnovas, J.M., Umetsu, D.T., Dekruyff, R.H., Freeman, G.J., et al. (2012) Binding of hepatitis A virus to its cellular receptor 1 inhibits T-regulatory cell functions in humans. Gastroenterology, 142, 1516-1525. doi:10.1053/j.gastro.2012.02.039
[44] Thomas, D.L., Thio, C.L., Marin, M.P., Qi, Y., Ge, D., O’Huigin, C., Kidd, J., Kidd, K., Khakoo, S.I., Alexander, G., et al. (2009) Genetic variation in IL28B and spontaneous clearence of hepatitis C virus. Nature, 461, 798801.
[45] Hsu, C.S., Hsu, S.J., Chen, H.C., Liu, C.H., Jeng, J., Liu, C.J., Chen, P.J., Chen, D.S. and Kao, J.H. (2012) Association of IL28B genotypes with metabolic profiles and viral clearance rate in chronic hepatitis C patients. Hepatology International, 7, 1-9.
[46] Bowen, D.G. and Walker, C.M. (2005) Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature, 436, 946-952. doi:10.1038/nature04079
[47] Charles, E.D. and Dustin, L.B. (2011) Chemokine antagonism in chronic hepatitis C virus infection. The Journal of Clinical Investigation, 121, 25-27. doi:10.1172/JCI45610
[48] Golden-Mason, L., Castelblanco, N., O'Farrelly, C. and Rosen, H.R. (2007) Phenotypic and functional changes of cytotoxic CD56pos natural T cells determine outcome of acute hepatitis C virus infection. Journal of Virology, 81, 9292-9298. doi:10.1128/JVI.00834-07
[49] Rehermann, B. (2009) Hepatitis C virus versus innate and adaptive immune responses: A tale of coevolution and coexistence. The Journal of Clinical Investigation, 119, 1745-1754. doi:10.1172/JCI39133
[50] Thimme, R., Bukh, J., Spangenberg, H.C., Wieland, S., Pemberton, J., Steiger, C., Govindarajan, S., Purcell, R.H. and Chisari, F.V. (2002) Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proceedings of the National Academy of Sciences of the United States of America, 99, 15661-15668. doi:10.1073/pnas.202608299

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.