Effect of exogenous somatotropin and staged ovariectomy on mRNA expression of select ECM-related proteins in mammary tissue of prepubertal Holstein calves

Abstract

Growth hormone (GH) and estrogen are essential stimulators of mammary cell proliferation and mammary development as mammals near puberty. Mammary ductal growth requires modifications of the extracellular matrix (ECM) for this tissue expansion to occur. Our purpose was to evaluate the effects of exogenous GH and ovariectomy (known to impact estrogen production) on gene expression of selected ECM proteins in the mammary parenchyma (PAR) and mammary fat pad (MFP) of prepubertal calves. Our hypothesis was that both GH and ovariectomy would alter the mRNA expression of multiple mammary ECM proteins. However, treatment with GH significantly reduced the expression of only fibronectin in PAR. However, the mRNA expression of all of the ECM proteins tested was numerically lower in PAR from GH treated calves. In contrast, staged ovariectomy decreased expression of fibronectin and heat shock protein 90 but increased expression of epimorphin in mammary PAR. In the MFP expression of Rac-1 and fascin were increased. These findings suggest that effects of exogenous GH on mammary gland composition are only marginally dependent on alterations in ECM proteins but the more pronounced effects of ovariectomy (reduced PAR mass and altered myoepithelial ontogeny) are more likely linked to changes in expression of ECM proteins.

Share and Cite:

Huderson, B. , Velayudhan, B. , Pearson, R. , Ellis, S. and Akers, R. (2013) Effect of exogenous somatotropin and staged ovariectomy on mRNA expression of select ECM-related proteins in mammary tissue of prepubertal Holstein calves. Open Journal of Animal Sciences, 3, 160-168. doi: 10.4236/ojas.2013.33024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Tucker, H.A. (1981) Physiological control of mammary growth, lactogenesis, and lactation. Journal of Dairy Science, 64, 1403-1421. doi:10.3168/jds.S0022-0302(81)82711-7
[2] Huderson, B.P., Velayudhan, B.T., Pearson, R.E., Ellis, S.E. and Akers, R.M. (2011) Effects of Exogenous somatotropin in Holstein calves on mammary gland composition and proliferation. Journal of Dairy Science, 94, 5005-5016. doi:10.3168/jds.2011-4229
[3] Velayudhan, B.T., Huderson B.P., McGilliard, M.L., Jiang, H., Ellis, S.E and Akers, R.M. (2012) Effect of staged ovariectomy on measures of mammary growth and development in prepubertal dairy heifers. Animal, 6, 941-951. doi:10.1017/S1751731111002333
[4] McFadden, T.B., Daniel, T.E. and Akers, R.M. (1990) Effects of plane of nutrition, growth hormone and unsaturated fat on growth hormone, insulin and prolactin receptors in prepubertal lambs. Journal of Animal Science, 68, 3180-3189.
[5] Sinowatz, F., Schams, D., Kolle, S., Plath, A., Lincoln, D. and Waters, M. J. (2000) Cellular localisation of GH receptor in the bovine mammary gland during mammogenesis, lactation and involution. Journal of Endocrinology, 166, 503-510. doi:10.1677/joe.0.1660503
[6] Plath-Gabler, A., Gabler, C., Sinowatz, F., Berisha B. and Schams, D. (2001) The expression of the IGF family and GH receptor in the bovine mammary gland. Journal of Endocrinology, 168, 39-48. doi:10.1677/joe.0.1680039
[7] Akers, R.M., McFadden, T.B., Purup, S., Vestergaard, M., Sejrsen, K. and Capuco, A.V. (2000) Local IGF-I axis in peripubertal ruminant mammary development. Journal of Mammary Gland Biology and Neoplasia, 5, 43-51. doi:10.1023/A:1009563115612
[8] Akers, R.M., Ellis, S.E. and Berry, S.D. (2005) Ovarian and IGF-I axis control of mammary development in prepubertal heifers. Domestic Animal Endocrinology, 29, 259-267. doi:10.1016/j.domaniend.2005.02.037
[9] Woodward, T.L., Beal, W.E. and Akers, R.M. (1993) Cell interactions in initiation of mammary epithelial proliferation by oestradiol and progesterone in prepubertal heifers. Journal of Endocrinology, 136, 149-157. doi:10.1677/joe.0.1360149
[10] Berry, S.D., McFadden, T.B., Pearson, R.E. and Akers, R.M. (2001) A local increase in the mammary IGF-1: IGFBP-3 ratio mediates the mammogenic effects of estrogen and growth hormone. Domestic Animal Endocrinology, 21, 39-53. doi:10.1016/S0739-7240(01)00101-1
[11] Berry, S.D., Jobst, P.M., Ellis, S.E., Howard, R.D., Capuco, A.V. and Akers, R.M. (2003c) Mammary epithetlial proliferation and estrogen receptor alpha expression in prepubertal heifers: Effects of ovariectomy and growth hormone. Journal of Dairy Science, 86, 2098-2105. doi:10.3168/jds.S0022-0302(03)73799-0
[12] Capuco, A.V., Ellis, S.E., Wood, D. L., Akers, R.M., Garrett, W. (2002) Postnatal mammary ductal growth: Threedimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue and Cell, 34, 143-154. doi:10.1016/S0040-8166(02)00024-1
[13] Meyer, M.J., Capuco, A.V., Ross, D.A., Lintault, L.M. and Van Amburgh, M.E. (2006) Developmental and nutritional regulation of the prepubertal heifer mammary gland: I. Parenchyma and fat pad mass and composition. Journal of Dairy Science, 89, 4289-4297. doi:10.3168/jds.S0022-0302(06)72475-4
[14] Sinha, Y.N. and Tucker, H.A. (1969) Mammary development and pituitary prolactin level of heifers from birth through puberty and during the estrous cycle. Journal of Dairy Science, 52, 507-512. doi:10.3168/jds.S0022-0302(69)86595-1
[15] Xu, R., Boudreau A. and Bissell, M.J. (2009) Tissue architecture and function: Dynamic reciprocity via extra and intra-cellular matrices. Cancer and Metastasis Reviews, 28, 167-176. doi:10.1007/s10555-008-9178-z
[16] Woodward, T.L., Xie, J., Fendrick, J.L. and Haslam, S.Z. (2000) Proliferation of mouse mammary epithelial cells in vitro: Interactions among epidermal growth factor, insulin-like growth factor I, ovarian hormones, and extracellular matrix proteins. Endocrinology, 141, 3578-3586. doi:10.1210/en.141.10.3578
[17] Xie, J. and Haslam, S.Z. (1997) Extracellular matrix regulates ovarian hormone-dependent proliferation of mouse mammary epithelial cells. Endocrinology, 138, 24662473. doi:10.1210/en.138.6.2466
[18] Berry, S.D., Howard, R.D. and Akers R.M. (2003) Mammary localization and abundance of laminin, fibronectin, and collagen IV proteins in prepubertal heifers. Journal of Dairy Science, 86, 2864-2874. doi:10.3168/jds.S0022-0302(03)73883-1
[19] Rabot, A., Sinowatz, F., Berisha, B., Meyer, H.H.D. and Schams, D. (2007) Expression and localization of extracellular matrix-degrading proteinases and their inhibittors in the bovine mammary gland during development, function, and involution. Journal of Dairy Science, 90, 740-748. doi:10.3168/jds.S0022-0302(07)71558-8
[20] Casey, T., Dover, H., Liesman, J., DeVries, L., Kupel, M., VanderHaar, M. and Plaut, K. (2011) Transcriptome analysis of epithelial and stromal contributions to mammogenesis in three week prepartum cows. PLoS ONE, 6, e2241. doi:10.1371/journal.pone.0022541
[21] Hovey, R. and Aimo, L. (2010) Diverse and active roles for adipocytes during mammary gland growth and function. Journal of Mammary Gland Biology and Neoplasia, 15, 279-290. doi:10.1007/s10911-010-9187-8
[22] Su, Y., Shankar, K., Rahal, O. and Simmen, R.C.M. (2011) Bidirectional signaling of mammary epithelium and stroma: Implications for breast cancer—Preventive actions of dietary factors. The Journal of Nutritional Biochemistry, 22, 605-611. doi:10.1016/j.jnutbio.2010.09.008
[23] Maller, O., Martinson, H. and Schedin, P. (2010) Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 15, 301-318. doi:10.1007/s10911-010-9189-6
[24] Piantoni, P., Bionaz, M., Graugnard, D.E., Daniels, K.M., Akers, R.M. and Loor, J.J. (2008) Gene expression ratio stability evaluation in prepubertal bovine mammary tissue from calves fed different milk replacers reveals novel internal controls for quantitative polymerase chain reaction. Journal of Nutrition, 138, 1158-1164.
[25] Purup, S., Sejrsen, K., Foldager, J. and Akers, R.M. (1993) Effect of exogenous bovine growth hormone and ovariectomy on prepubertal mammary growth, serum hormones and acute in-vitro proliferative response of mammary explants from Holstein heifers. Journal of Endocrinology, 139, 19-26. doi:10.1677/joe.0.1390019
[26] Woodward, T.L., Mienaltowski, A.S., Modi, R.R., Bennett, J.M. and Haslam, S.Z. (2001) Fibronectin and the alpha(5)beta(1) integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology, 142, 3214-3222. doi:10.1210/en.142.7.3214
[27] Haslam, S.Z. and Woodward, T.L. (2001) Reciprocal regulation of extracellular matrix proteins and ovarian steroid activity in the mammary gland. Breast Cancer Research, 3, 365-372. doi:10.1186/bcr324
[28] Berry, S.D., Howard, R.D., Jobst, P.M., Jiang, H. and Akers R.M. (2003) Interactions between the ovary and the local IGF-I axis modulate mammary development in prepubertal heifers. Journal of Endocrinology, 177, 295304. doi:10.1677/joe.0.1770295
[29] Hansen, R.K. and Bissell, M.J. (2000) Tissue architecture and breast cancer: The role of extracellular matrix and steroid hormones. Endocrine-Related Cancer, 7, 95113. doi:10.1677/erc.0.0070095
[30] Ferguson, J.E., Schor, A.M., Howell A. and Ferguson M.W. (1992) Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell and Tissue Research, 268, 167-177. doi:10.1007/BF00338066
[31] Bascom, J.L., Fata, J.E., Hirai, Y., Sternlicht, M.D. and Bissell, M.J. (2005) Epimorphin overexpression in the mouse mammary gland promotes alveolar hyperplasia and mammary adenocarcinoma. Cancer Research, 65, 8617-8621. doi:10.1158/0008-5472.CAN-05-1985
[32] Hirai, Y., Lochter, A., Galosy, S., Koshida, S., Niwa, S. and Bissell, M.J. (1998) Epimorphin functions as a key morphoregulator for mammary epithelial cells. The Journal of Cell Biology, 140, 159-169. doi:10.1083/jcb.140.1.159
[33] Safayi, S., Korn, N., Bertram, A., Akers, R.M., Capuco, A.V., Pratt, S.L. and Ellis, S. (2012) Myoepithelial cell differentiation markers in prepubertal bovine mammary gland: Effect of ovariectomy. Journal of Dairy Science, 95, 2965-2976. doi:10.3168/jds.2011-4690
[34] Gudjonsson, T., Adriance, M.C., Sternlicht, M.D. Petersen, O.W. and Bissell, M.J. (2005) Myoepithelial cells: Their origin and function in breast morphogenesis and neoplasia. Journal of Mammary Gland Biology and Neoplasia, 10, 261-272. doi:10.1007/s10911-005-9586-4
[35] Echeverria, P.C. and Picard, D. (2010) Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochemica Biophysica Acta, 1803, 641-649. doi:10.1016/j.bbamcr.2009.11.012
[36] Sanchez, E.R. (2012) Chaperoning steroidal physiology: Lessons from mouse genetic models of Hsp90 and its cochaperones. Biochimica Biophysica Acta, 1823, 722-729. doi:10.1016/j.bbamcr.2011.11.006
[37] Diehl, M.C., Idowu, M.O., Kimmelshue, K., York, T.P., Elmore L.W. and Holt, S.E. (2009) Elevated expression of nuclear Hsp90 in invasive breast tumors. Cancer Biology & Therapy, 8, 1952-1961. doi:10.4161/cbt.8.20.9639
[38] ] Keely, P.J., Westwick, J.K., Whitehead, I.P., Der, C.J. and Parise L.V. (1997) Cdc42 and Rac1 induce integrinmediated cell motility and invasiveness through PI(3)K. Nature, 390, 632-636. doi:10.1038/37656
[39] Ewald, A.J., Brenot, A., Duong, M., Chan, B.S. and Werb, Z. (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Developmental Cell, 14, 570-581. doi:10.1016/j.devcel.2008.03.003
[40] Su, L.F., Knoblauch, R. and Garabedian, M.J. (2001) Rho GTPases as modulators of the estrogen receptor transcriptional response. The Journal of Biological Chemistry, 276, 3231-3237. doi:10.1074/jbc.M005547200
[41] Laufs, U., Adam, O., Strehlow, K., Wassmann, S., Konkol, C., Laufs, K., Schmidt, W., Bohm, M. and Nickenig, G., (2003) Down-regulation of Rac-1 GTPase by Estrogen. The Journal of Biological Chemistry, 278, 5956-5962. doi:10.1074/jbc.M209813200
[42] Adam, O., Hagel, M., Theobald, K., Bohm, M. and Laufs, U. (2009) Inhibitory effect of estrogen on Rac1-expression in monocytes. Biochemical and Biophysical Research Communications, 386, 45-49. doi:10.1016/j.bbrc.2009.05.126
[43] Sun, J., He, H., Xiong, Y., Lu, S., Shen, J., Cheng, A., Chang, W., Hou, M., Lancaster, J.M., Kim, M. and Yang, S. (2012) Fascin protein is critical for transforming growth factor β protein-induced invasion and filopodia formation in spindle-shaped tumor cells. The Journal of Biological Chemistry, 286, 38865-38875. doi:10.1074/jbc.M111.270413
[44] Nicodemus, G.D., Villanueva, I. and Bryant, S.J. (2007) Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels. Journal of Biomedical Materials Research, 83, 323-331. doi:10.1002/jbm.a.31251
[45] Musters, S., Coughlan, K., McFadden, T., Maple, R., Mulvey, T. and Plaut, K. (2004) Exogenous TGF-beta1 promotes stromal development in the heifer mammary gland. Journal of Dairy Science, 87, 896-904. doi:10.3168/jds.S0022-0302(04)73234-8
[46] Teuliere, J., Faraldo, M.M., Deugnier, M.A., Shtutman, M., Ben-Ze’ev, A., Thiery, J.P. and Glukhova, M.A. (2005) Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development, 132, 267-277. doi:10.1242/dev.01583
[47] ] Daniels, K.M., Webb Jr., K.E., McGilliard, M.L., Meter, M.J., Amburgh, M.E. and Akers, R.M. (2006) Effects of body weight and nutrition on mammary protein expression profiles in Holstein heifers. Journal of Dairy Science, 89, 4276-4288. doi:10.3168/jds.S0022-0302(06)72474-2
[48] Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J. and Zako, M. (1999) Functions of cell surface heparan sulfate proteoglycans. Annual Review of Biochemistry, 68, 729-777. doi:10.1146/annurev.biochem.68.1.729
[49] Guvakova, A., Boettiger, D. and Adams, J.C. (2002) Induction of fascin spikes in breast cancer cells by activtion of the insulin-like growth factor-I receptor. The International Journal of Biochemistry & Cell Biology, 34, 685-698.
[50] Tucker, H.A. (1981) Physiological control of mammary growth, lactogenesis, and lactation. Journal of Dairy Science, 64, 1403-1421. doi:10.3168/jds.S0022-0302(81)82711-7
[51] Huderson, B.P., Velayudhan, B.T., Pearson, R.E., Ellis, S.E. and Akers, R.M. (2011) Effects of Exogenous somatotropin in Holstein calves on mammary gland composition and proliferation. Journal of Dairy Science, 94, 5005-5016. doi:10.3168/jds.2011-4229
[52] Velayudhan, B.T., Huderson B.P., McGilliard, M.L., Jiang, H., Ellis, S.E and Akers, R.M. (2012) Effect of staged ovariectomy on measures of mammary growth and development in prepubertal dairy heifers. Animal, 6, 941-951. doi:10.1017/S1751731111002333
[53] McFadden, T.B., Daniel, T.E. and Akers, R.M. (1990) Effects of plane of nutrition, growth hormone and unsaturated fat on growth hormone, insulin and prolactin receptors in prepubertal lambs. Journal of Animal Science, 68, 3180-3189.
[54] Sinowatz, F., Schams, D., Kolle, S., Plath, A., Lincoln, D. and Waters, M. J. (2000) Cellular localisation of GH receptor in the bovine mammary gland during mammogenesis, lactation and involution. Journal of Endocrinology, 166, 503-510. doi:10.1677/joe.0.1660503
[55] Plath-Gabler, A., Gabler, C., Sinowatz, F., Berisha B. and Schams, D. (2001) The expression of the IGF family and GH receptor in the bovine mammary gland. Journal of Endocrinology, 168, 39-48. doi:10.1677/joe.0.1680039
[56] Akers, R.M., McFadden, T.B., Purup, S., Vestergaard, M., Sejrsen, K. and Capuco, A.V. (2000) Local IGF-I axis in peripubertal ruminant mammary development. Journal of Mammary Gland Biology and Neoplasia, 5, 43-51. doi:10.1023/A:1009563115612
[57] Akers, R.M., Ellis, S.E. and Berry, S.D. (2005) Ovarian and IGF-I axis control of mammary development in prepubertal heifers. Domestic Animal Endocrinology, 29, 259-267. doi:10.1016/j.domaniend.2005.02.037
[58] Woodward, T.L., Beal, W.E. and Akers, R.M. (1993) Cell interactions in initiation of mammary epithelial proliferation by oestradiol and progesterone in prepubertal heifers. Journal of Endocrinology, 136, 149-157. doi:10.1677/joe.0.1360149
[59] Berry, S.D., McFadden, T.B., Pearson, R.E. and Akers, R.M. (2001) A local increase in the mammary IGF-1: IGFBP-3 ratio mediates the mammogenic effects of estrogen and growth hormone. Domestic Animal Endocrinology, 21, 39-53. doi:10.1016/S0739-7240(01)00101-1
[60] Berry, S.D., Jobst, P.M., Ellis, S.E., Howard, R.D., Capuco, A.V. and Akers, R.M. (2003c) Mammary epithetlial proliferation and estrogen receptor alpha expression in prepubertal heifers: Effects of ovariectomy and growth hormone. Journal of Dairy Science, 86, 2098-2105. doi:10.3168/jds.S0022-0302(03)73799-0
[61] Capuco, A.V., Ellis, S.E., Wood, D. L., Akers, R.M., Garrett, W. (2002) Postnatal mammary ductal growth: Threedimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue and Cell, 34, 143-154. doi:10.1016/S0040-8166(02)00024-1
[62] Meyer, M.J., Capuco, A.V., Ross, D.A., Lintault, L.M. and Van Amburgh, M.E. (2006) Developmental and nutritional regulation of the prepubertal heifer mammary gland: I. Parenchyma and fat pad mass and composition. Journal of Dairy Science, 89, 4289-4297. doi:10.3168/jds.S0022-0302(06)72475-4
[63] Sinha, Y.N. and Tucker, H.A. (1969) Mammary development and pituitary prolactin level of heifers from birth through puberty and during the estrous cycle. Journal of Dairy Science, 52, 507-512. doi:10.3168/jds.S0022-0302(69)86595-1
[64] Xu, R., Boudreau A. and Bissell, M.J. (2009) Tissue architecture and function: Dynamic reciprocity via extra and intra-cellular matrices. Cancer and Metastasis Reviews, 28, 167-176. doi:10.1007/s10555-008-9178-z
[65] Woodward, T.L., Xie, J., Fendrick, J.L. and Haslam, S.Z. (2000) Proliferation of mouse mammary epithelial cells in vitro: Interactions among epidermal growth factor, insulin-like growth factor I, ovarian hormones, and extracellular matrix proteins. Endocrinology, 141, 3578-3586. doi:10.1210/en.141.10.3578
[66] Xie, J. and Haslam, S.Z. (1997) Extracellular matrix regulates ovarian hormone-dependent proliferation of mouse mammary epithelial cells. Endocrinology, 138, 24662473. doi:10.1210/en.138.6.2466
[67] Berry, S.D., Howard, R.D. and Akers R.M. (2003) Mammary localization and abundance of laminin, fibronectin, and collagen IV proteins in prepubertal heifers. Journal of Dairy Science, 86, 2864-2874. doi:10.3168/jds.S0022-0302(03)73883-1
[68] Rabot, A., Sinowatz, F., Berisha, B., Meyer, H.H.D. and Schams, D. (2007) Expression and localization of extracellular matrix-degrading proteinases and their inhibittors in the bovine mammary gland during development, function, and involution. Journal of Dairy Science, 90, 740-748. doi:10.3168/jds.S0022-0302(07)71558-8
[69] Casey, T., Dover, H., Liesman, J., DeVries, L., Kupel, M., VanderHaar, M. and Plaut, K. (2011) Transcriptome analysis of epithelial and stromal contributions to mammogenesis in three week prepartum cows. PLoS ONE, 6, e2241. doi:10.1371/journal.pone.0022541
[70] Hovey, R. and Aimo, L. (2010) Diverse and active roles for adipocytes during mammary gland growth and function. Journal of Mammary Gland Biology and Neoplasia, 15, 279-290. doi:10.1007/s10911-010-9187-8
[71] Su, Y., Shankar, K., Rahal, O. and Simmen, R.C.M. (2011) Bidirectional signaling of mammary epithelium and stroma: Implications for breast cancer—Preventive actions of dietary factors. The Journal of Nutritional Biochemistry, 22, 605-611. doi:10.1016/j.jnutbio.2010.09.008
[72] Maller, O., Martinson, H. and Schedin, P. (2010) Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 15, 301-318. doi:10.1007/s10911-010-9189-6
[73] Piantoni, P., Bionaz, M., Graugnard, D.E., Daniels, K.M., Akers, R.M. and Loor, J.J. (2008) Gene expression ratio stability evaluation in prepubertal bovine mammary tissue from calves fed different milk replacers reveals novel internal controls for quantitative polymerase chain reaction. Journal of Nutrition, 138, 1158-1164.
[74] Purup, S., Sejrsen, K., Foldager, J. and Akers, R.M. (1993) Effect of exogenous bovine growth hormone and ovariectomy on prepubertal mammary growth, serum hormones and acute in-vitro proliferative response of mammary explants from Holstein heifers. Journal of Endocrinology, 139, 19-26. doi:10.1677/joe.0.1390019
[75] Woodward, T.L., Mienaltowski, A.S., Modi, R.R., Bennett, J.M. and Haslam, S.Z. (2001) Fibronectin and the alpha(5)beta(1) integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology, 142, 3214-3222. doi:10.1210/en.142.7.3214
[76] Haslam, S.Z. and Woodward, T.L. (2001) Reciprocal regulation of extracellular matrix proteins and ovarian steroid activity in the mammary gland. Breast Cancer Research, 3, 365-372. doi:10.1186/bcr324
[77] Berry, S.D., Howard, R.D., Jobst, P.M., Jiang, H. and Akers R.M. (2003) Interactions between the ovary and the local IGF-I axis modulate mammary development in prepubertal heifers. Journal of Endocrinology, 177, 295304. doi:10.1677/joe.0.1770295
[78] Hansen, R.K. and Bissell, M.J. (2000) Tissue architecture and breast cancer: The role of extracellular matrix and steroid hormones. Endocrine-Related Cancer, 7, 95113. doi:10.1677/erc.0.0070095
[79] Ferguson, J.E., Schor, A.M., Howell A. and Ferguson M.W. (1992) Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell and Tissue Research, 268, 167-177. doi:10.1007/BF00338066
[80] Bascom, J.L., Fata, J.E., Hirai, Y., Sternlicht, M.D. and Bissell, M.J. (2005) Epimorphin overexpression in the mouse mammary gland promotes alveolar hyperplasia and mammary adenocarcinoma. Cancer Research, 65, 8617-8621. doi:10.1158/0008-5472.CAN-05-1985
[81] Hirai, Y., Lochter, A., Galosy, S., Koshida, S., Niwa, S. and Bissell, M.J. (1998) Epimorphin functions as a key morphoregulator for mammary epithelial cells. The Journal of Cell Biology, 140, 159-169. doi:10.1083/jcb.140.1.159
[82] Safayi, S., Korn, N., Bertram, A., Akers, R.M., Capuco, A.V., Pratt, S.L. and Ellis, S. (2012) Myoepithelial cell differentiation markers in prepubertal bovine mammary gland: Effect of ovariectomy. Journal of Dairy Science, 95, 2965-2976. doi:10.3168/jds.2011-4690
[83] Gudjonsson, T., Adriance, M.C., Sternlicht, M.D. Petersen, O.W. and Bissell, M.J. (2005) Myoepithelial cells: Their origin and function in breast morphogenesis and neoplasia. Journal of Mammary Gland Biology and Neoplasia, 10, 261-272. doi:10.1007/s10911-005-9586-4
[84] Echeverria, P.C. and Picard, D. (2010) Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochemica Biophysica Acta, 1803, 641-649. doi:10.1016/j.bbamcr.2009.11.012
[85] Sanchez, E.R. (2012) Chaperoning steroidal physiology: Lessons from mouse genetic models of Hsp90 and its cochaperones. Biochimica Biophysica Acta, 1823, 722-729. doi:10.1016/j.bbamcr.2011.11.006
[86] Diehl, M.C., Idowu, M.O., Kimmelshue, K., York, T.P., Elmore L.W. and Holt, S.E. (2009) Elevated expression of nuclear Hsp90 in invasive breast tumors. Cancer Biology & Therapy, 8, 1952-1961. doi:10.4161/cbt.8.20.9639
[87] ] Keely, P.J., Westwick, J.K., Whitehead, I.P., Der, C.J. and Parise L.V. (1997) Cdc42 and Rac1 induce integrinmediated cell motility and invasiveness through PI(3)K. Nature, 390, 632-636. doi:10.1038/37656
[88] Ewald, A.J., Brenot, A., Duong, M., Chan, B.S. and Werb, Z. (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Developmental Cell, 14, 570-581. doi:10.1016/j.devcel.2008.03.003
[89] Su, L.F., Knoblauch, R. and Garabedian, M.J. (2001) Rho GTPases as modulators of the estrogen receptor transcriptional response. The Journal of Biological Chemistry, 276, 3231-3237. doi:10.1074/jbc.M005547200
[90] Laufs, U., Adam, O., Strehlow, K., Wassmann, S., Konkol, C., Laufs, K., Schmidt, W., Bohm, M. and Nickenig, G., (2003) Down-regulation of Rac-1 GTPase by Estrogen. The Journal of Biological Chemistry, 278, 5956-5962. doi:10.1074/jbc.M209813200
[91] Adam, O., Hagel, M., Theobald, K., Bohm, M. and Laufs, U. (2009) Inhibitory effect of estrogen on Rac1-expression in monocytes. Biochemical and Biophysical Research Communications, 386, 45-49. doi:10.1016/j.bbrc.2009.05.126
[92] Sun, J., He, H., Xiong, Y., Lu, S., Shen, J., Cheng, A., Chang, W., Hou, M., Lancaster, J.M., Kim, M. and Yang, S. (2012) Fascin protein is critical for transforming growth factor β protein-induced invasion and filopodia formation in spindle-shaped tumor cells. The Journal of Biological Chemistry, 286, 38865-38875. doi:10.1074/jbc.M111.270413
[93] Nicodemus, G.D., Villanueva, I. and Bryant, S.J. (2007) Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels. Journal of Biomedical Materials Research, 83, 323-331. doi:10.1002/jbm.a.31251
[94] Musters, S., Coughlan, K., McFadden, T., Maple, R., Mulvey, T. and Plaut, K. (2004) Exogenous TGF-beta1 promotes stromal development in the heifer mammary gland. Journal of Dairy Science, 87, 896-904. doi:10.3168/jds.S0022-0302(04)73234-8
[95] Teuliere, J., Faraldo, M.M., Deugnier, M.A., Shtutman, M., Ben-Ze’ev, A., Thiery, J.P. and Glukhova, M.A. (2005) Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development, 132, 267-277. doi:10.1242/dev.01583
[96] ] Daniels, K.M., Webb Jr., K.E., McGilliard, M.L., Meter, M.J., Amburgh, M.E. and Akers, R.M. (2006) Effects of body weight and nutrition on mammary protein expression profiles in Holstein heifers. Journal of Dairy Science, 89, 4276-4288. doi:10.3168/jds.S0022-0302(06)72474-2
[97] Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J. and Zako, M. (1999) Functions of cell surface heparan sulfate proteoglycans. Annual Review of Biochemistry, 68, 729-777. doi:10.1146/annurev.biochem.68.1.729
[98] Guvakova, A., Boettiger, D. and Adams, J.C. (2002) Induction of fascin spikes in breast cancer cells by activtion of the insulin-like growth factor-I receptor. The International Journal of Biochemistry & Cell Biology, 34, 685-698.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.