Physiological effects of nickel chloride on the freshwater cyanobacterium Synechococcus sp. IU 625

Abstract

Harmful algal blooms (HABs) are a serious environmental problem globally. The ability of cyanobacteria, one of the major causative agents of HABs, to grow in heavy metal polluted areas is proving a challenge to environmental restoration initiatives. Some cyanobacteria secrete toxins, such as microcystin, that are potentially dangerous to animals and humans. In this study, the physiology of a cyanobacterium was assessed to nickel chloride exposure. Cell growths were monitored throughout the study with various nickel chloride concentrations (0, 10, 25 or 50 mg/L). Morphological abnormalities were observed with microscopic image analyses. Inductively coupled plasma mass spectrometry (ICP-MS) was carried out to trace the distribution of nickel during the growth period. This study provides insight on potential nickel response mechanisms in freshwater cyanobacteria, which may lead to effective HAB prevention strategy development.

Share and Cite:

Nohomovich, B. , Nguyen, B. , Quintanilla, M. , Lee, L. , Murray, S. and Chu, T. (2013) Physiological effects of nickel chloride on the freshwater cyanobacterium Synechococcus sp. IU 625. Advances in Bioscience and Biotechnology, 4, 10-14. doi: 10.4236/abb.2013.47A2002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Brand, L.E., Pablo, J., Compton, A., Hammerschlag, N. and Mash, D.C. (2010) Cyanobacterial blooms and the occurrence of the neurotoxin beta-N-methylamino-Lalanine (BMAA) in South Florida Aquatic Food Webs. Harmful Algae, 9, 620-635. doi:10.1016/j.hal.2010.05.002
[2] Banack, S.A., Caller, T.A., and Stommel, E.W. (2010) The cyanobacteria derived toxin Beta-N-methylamino-Lalanine and amyotrophic lateral sclerosis. Toxins (Basel), 2, 2837-2850. doi:10.3390/toxins2122837
[3] Chu, T.C., Murray, S.R., Todd, J., Perez, W., Yarborough, J.R., Okafor, C. and Lee, L.H. (2012) Adaption of Synechococcus sp. IU 625 to growth in the presence of mercuric chloride. Acta Histochemica, 114, 6-11. doi:10.1016/j.acthis.2011.01.004
[4] Lee, H.L., Lustigman, B., Schwinge, V., Chiu, I.Y. and Hsu, S. (1992) Effect of mercury and cadmium on the growth of Anacystis nidulans. Bulletin of Environmental Contamination and Toxicology, 49, 272-278. doi:10.1007/BF00191766
[5] Lee, L.H. and Lustigman, B. (1996) Effect of barium and nickel on the growth of Anacystis nidulans. Bulletin of Environmental Contamination and Toxicology, 56, 985992. doi:10.1007/s001289900142
[6] Lee, L.H., Lustigman, B., Chu, I.Y. and Hsu, S. (1992) Effect of lead and cobalt on the growth of Anacystis nidulans. Bulletin of Environmental Contamination and Toxicology, 48, 230-236. doi:10.1007/BF00194376
[7] Lee, L.H., Lustigman, B., Chu, I.Y. and Jou, H.L. (1991) Effect of aluminum and pH on the growth of Anacystis nidulans. Bulletin of Environmental Contamination and Toxicology, 46, 720-726. doi:10.1007/BF01689958
[8] Lee, L.H., Lustigman, B. and Dandorf, D. (1994) Effect of manganese and zinc on the growth of Anacystis nidulans. Bulletin of Environmental Contamination and Toxicology, 53, 158-165. doi:10.1007/BF00205154
[9] Lee, L.H., Lustigman, B. and Maccari, J. (1993) Effect of copper on the growth of Anacystis nidulans. Bulletin of Environmental Contamination and Toxicology, 50, 600607. doi:10.1007/BF00191252
[10] Lee, L.H., Lustigman, B., Murray, S. and Koepp, S. (1999) Effect of selenium on the growth of the cyanobacterium Anacystis nidulans. Bulletin of Environmental Contamination and Toxicology, 62, 591-599. doi:10.1007/s001289900916
[11] Lee, L.H., Lustigman, B.K. and Murray, S.R. (2002) Combined effect of mercuric chloride and selenium dioxide on the growth of the cyanobacteria, Anacystis nidulans. Bulletin of Environmental Contamination and Toxicology, 69, 900-907. doi:10.1007/s00128-002-0144-0
[12] Lustigman, B., Lee, L.H. and Khalil, A. (1995) Effects of nickel and pH on the growth of Chlorella vulgaris. Bulletin of Environmental Contamination and Toxicology, 55, 73-80. doi:10.1007/BF00212391
[13] Lustigman, B., Lee, L.H., Morata, J. and Khan, F. (2000) Effect of thallium on the growth of Anacystis nidulans and Chlamydomonas reinhardtii. Bulletin of Environmental Contamination and Toxicology, 64, 565-573. doi:10.1007/s001280000040
[14] Chakraborty, P., Raghunadh Babu, P.V., Acharyya, T. and Bandyopadhyay, D. (2010) Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC. Chemosphere, 80, 548-553. doi:10.1016/j.chemosphere.2010.04.039
[15] Tchou-Wong, K.M., Kiok, K., Tang, Z., Kluz, T., Arita, A., Smith, P.R., Brown, S. and Costa, M. (2011) Effects of nickel treatment on H3K4 trimethylation and gene expression. PLoS One, 6, e17728. doi:10.1371/journal.pone.0017728
[16] Zhou, X., Li, Q., Arita, A., Sun, H. and Costa, M. (2009) Effects of nickel, chromate and arsenite on histone 3 lysine methylation. Toxicology and Applied Pharmacology, 236, 78-84. doi:10.1016/j.taap.2009.01.009
[17] US Environmental Protection Agency (2010) Target analyte metals (heavy metals) and cyanide. http://www.epa.gov/reg3hwmd/bf-lr/regional/analytical/metals.htm
[18] Chu, T.C., Lee, L.H., Gaynor, J.J., Vega, Q.C., Lustigman, B.K. and Srinivasan, S. (2007) Identification of the Synechococcus sp. IU 625 metallothionein gene and its evolutionary relationship to the metallothionein gene of other Cyanobacteria. In: Proceeding of the 2007 International Conference on Bioinformatics & Computational Biology. CSREA Press, 201-207.
[19] Kratz, W.A. and Myers, J. (1955) Photosynthesis and respiration of three blue-green algae. Plant Physiology, 30, 275-280. doi:10.1104/pp.30.3.275
[20] Talbot, J. and Weiss, A. (1994) Laboratory methods for ICP-MS analysis of trace metals in precipitation.
[21] Boisvert, S., Joly, D., Leclerc, S., Govindachary, S., Harnois, J. and Carpentier, R. (2007) Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals, 20, 879-889. doi:10.1007/s10534-007-9081-z

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.