Shared and discrete interacting partners of ELL1 and ELL2 by yeast two-hybrid assay

Abstract

ELL2 (eleven-nineteen lysine-rich leukemia transcription elongation factor), a component of a larger complex with pTEFb (cyclin T and CDK9) and AF4, is up-regulated in plasma cells where it influences mRNA processing by increasing exon skipping and enhancing proximal poly (A) site use. ELL2 is needed to produce the secretory-specific Ig heavy chain mRNA while ELL1 mRNA does not change in abundance with B cell stages. To investigate the potential interactions of other proteins with the ELL1 and ELL2 proteins, we preformed yeast two-hybrid studies. HSP40 and Testin were found to bind to ELL2 in its amino-terminal half. PCNA binds to ELL2 in a region encompassing amino acids 186 - 344. The potent transcription factors HIF1 α and ZNF622 interact with both ELL1 and 2 in the central, proline rich region. Meanwhile, BBS2 and ING3 interact with ELL1 but not ELL2 in this central proline-rich region. Many of the ELL-interacting-proteins uncovered in the two-hybrid screen are tumour suppressors that may work through the ELL: pTEFb complex to suppress or activate sets of genes in plasma cells.

Share and Cite:

Arumemi, F. , Bayles, I. , Paul, J. and Milcarek, C. (2013) Shared and discrete interacting partners of ELL1 and ELL2 by yeast two-hybrid assay. Advances in Bioscience and Biotechnology, 4, 774-780. doi: 10.4236/abb.2013.47101.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Shell, S. A., Martincic, K., Tran, J. and Milcarek, C. (2007) Increased phosphorylation of the carboxyl terminal domain of RNA polymerase II and loading of polyadenylation and co-transcriptional factors contribute to regulation of the Ig heavy chain mRNA in plasma cells. The Journal of Immunology, 179, 7663-7673.
[2] Milcarek, C., Albring, M., Langer, C. and Park, K.S. (2011) The eleven-nineteen lysine-rich leukemia gene (ELL2) influences the histone H3 modifications accompanying the shift to secretory Immunoglobulin heavy chain mRNA production. Journal of Biological Chemistry, 286, 33795-33803. doi:10.1074/jbc.M111.272096
[3] Martincic, K., Alkan, S.A., Cheatle, A., Borghesi, L. and Milcarek, C. (2009) Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. Nature Immunology, 10, 1102-1109. doi:10.1038/ni.1786
[4] Lin, C., Garrett, A.S., De Kumar, B., Smith, E.R., Gogol, M., Seidel, C., Krumlauf, R. and Shilatifard, A. (2011) Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). Genes & Development, 25, 1486-1498. doi:10.1101/gad.2059211
[5] Smith, E., Lin, C. and Shilatifard, A. (2011) The super elongation complex (SEC) and MLL in development and disease. Genes & Development, 25, 661-672. doi:10.1101/gad.2015411
[6] Luo, Z., Lin, C., Guest, E., Garrett, A.S., Mohaghegh, N., Swanson, S., Marshall, S., Florens, L., Washburn, M.P. and Shilatifard, A. (2012) The super elongation complex family of RNA polymerase II elongation factors: Gene target specificity and transcriptional output. Molecular and Cellular Biology, 32, 2608-2617. doi:10.1128/MCB.00182-12
[7] He, N., Liu, M., Hsu, J., Xue, Y., Chou, S., Burlingame, A., Krogan, N.J., Alber, T. and Zhou, Q. (2010) HIV-1 tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Molecular Cell, 38, 428438. doi:10.1016/j.molcel.2010.04.013
[8] He, N., Chan, C.K., Sobhian, B., Chou, S., Xue, Y., Liu, M., Alber, T., Benkirane, M. and Zhou, Q. (2011) Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin. Proceedings of the National Academy of Sciences, 108, E636-E645. doi:10.1073/pnas.1107107108
[9] Biswas, D., Milne, T.A., Basrur, V., Kim, J., ElenitobaJohnson, K.S.J., Allis, C.D. and Roeder, R.G. (2011) Function of leukemogenic mixed lineage leukemia 1 (MLL) fusion proteins through distinct partner protein complexes. Proceedings of the National Academy of Sciences, 108, 15751-15756. doi:10.1073/pnas.1111498108
[10] Barboric, M., Lenasi, T., Chen, H., Johansen, E.B., Guo, S. and Peterlin, B.M. (2009) 7SK snRNP/pTEFb couples transcription elongation with alternative splicing and is essential for vertebrate development. Proceedings of the National Academy of Sciences of the USA, 106, 77987803. doi:10.1073/pnas.0903188106
[11] Chou, S., Upton, H., Bao, K., Schulze-Gahmen, U., Samelson, A.J., He, N., Nowak, A., Lu, H., Krogan, N.J., Zhou, Q. and Alber, T. (2013) HIV-1 tat recruits transcription elongation factors dispersed along a flexible AFF4 scaffold. Proceedings of the National Academy of Sciences, 110, E123-E131. doi:10.1073/pnas.1216971110
[12] Luo, R.T., Lavau, C., Du, C.C., Simone, F., Polak, P.E., Kawamata, S. and Thirman, M.J. (2001) The elongation domain of ELL is dispensable but its ELL-associated factor 1 interaction domain is essential for MLL-ELLinduced leukemogenesis. Molecular and Cellular Biology, 21, 5678-5687. doi:10.1128/MCB.21.16.5678-5687.2001
[13] Simone, F., Luo, R.T., Polak, P.E., Kaberlein, J.J. and Thirman, M.J. (2003) ELL-associated factor 2 (EAF2), a functional homolog of EAF1 with alternative ELL binding properties. Blood, 101, 2355-2362. doi:10.1182/blood-2002-06-1664
[14] Gerber, M.A., Shilatifard, A. and Eissenberg, J.C. (2005) Mutational analysis of an RNA polymerase II elongation factor in drosophila melanogaster. Molecular and Cellular Biology, 25, 7803-7811. doi:10.1128/MCB.25.17.7803-7811.2005
[15] Li, Y., Fanning, A.S., Anderson, J.M. and Lavie, A. (2005) Structure of the conserved cytoplasmic C-terminal domain of occludin: Identification of the ZO-1 binding surface. Journal of Molecular Biology, 352, 151-164. doi:10.1016/j.jmb.2005.07.017
[16] Liu, M., Hsu, J., Chan, C., Li, Z. and Zhou, Q. (2012) The ubiquitin ligase Siah1 controls ELL2 stability and formation of super elongation complexes to modulate gene transcription. Molecular Cell, 46, 325-334. doi:10.1016/j.molcel.2012.03.007
[17] Wiederschain, D., Kawai, H., Gu, J., Shilatifard, A. and Yuan, Z.-M. (2003) Molecular basis of p53 functional inactivation by the leukemic protein MLL-ELL. Molecular and Cellular Biology, 23, 4230-4246. doi:10.1128/MCB.23.12.4230-4246.2003
[18] Ahn, H.-J., Cha, Y., Moon, S.-H., Jung, J.-E. and Park, K.-S. (2012) ELL3 enhances differentiation of mouse embryonic stem cells by regulating epithelial-mesenchymal transition and apoptosis. PLoS ONE, 7, e40293. doi:10.1371/journal.pone.0040293
[19] Du, J.X., Hagos, E.G., Nandan, M.O., Bialkowska, A.B., Yu, B. and Yang, V.W. (2011) The E3 ubiquitin ligase SMAD ubiquitination regulatory factor 2 negatively regulates Krüppel-like factor 5 protein. Journal of Biological Chemistry, 286, 40354-40364. doi:10.1074/jbc.M111.258707
[20] Du, J.X., Yun, C.C., Bialkowska, A. and Yang, V.W. (2007) Protein inhibitor of activated STAT1 interacts with and up-regulates activities of the pro-proliferative transcription factor Krüppel-like factor 5. Journal of Biological Chemistry, 282, 4782-4793. doi:10.1074/jbc.M603413200
[21] Harrold, S., Genovese, C., Kobrin, B., Morrison, S.L. and Milcarek, C. (1991) A comparison of apparent mRNA half-life using kinetic labeling techniques vs decay following administration of transcriptional inhibitors. Analytical Biochemistry, 198, 19-29. doi:10.1016/0003-2697(91)90500-S
[22] Guo, D.-F., Beyer, A.M., Yang, B., Nishimura, D.Y., Sheffield, V.C. and Rahmouni, K. (2011) Inactivation of Bardet-Biedl syndrome genes causes kidney defects. American Journal of Physiology—Renal Physiology, 300, F574-F580. doi:10.1152/ajprenal.00150.2010
[23] Liu, L., Ai, J., Xiao, W., Liu, J., Wang, Y., Xin, D., He, Z., Guo, Y. and Wang, Z. (2010) ELL is an HIF-1α partner that regulates and responds to hypoxia response in PC3 cells. Prostate, 70, 797-805.
[24] Xiao, W., Ai, J., Habermacher, G., Volpert, O., Yang, X., Zhang, A.-Y., Hahn, J., Cai, X. and Wang, Z. (2009) U19/Eaf2 binds to and stabilizes von Hippel-Lindau protein. Cancer Research, 69, 2599-2606. doi:10.1158/0008-5472.CAN-08-2595
[25] Xiao, W., Jiang, F. and Wang, Z. (2006) ELL binding regulates U19/EAf2 intracellular localization, stability, and transactivation. Prostate, 66, 1-12. doi:10.1002/pros.20309
[26] Lukashev, D. and Sitkovsky, M. (2008) Preferential expression of the novel alternative isoform I.3 of hypoxiainducible factor 1α in activated human T lymphocytes. Human Immunology, 69, 421-425. doi:10.1016/j.humimm.2008.05.004
[27] Semenza, G.L. (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annual Review of Cell and Developmental Biology, 15, 551-578. doi:10.1146/annurev.cellbio.15.1.551
[28] Hatano, N., Itoh, Y., Suzuki, H., Muraki, Y., Hayashi, H., Onozaki, K., Wood, I.C., Beech, D.J. and Muraki, K. (2012) Hypoxia-inducible factor-1α (HIF1α) switches on transient receptor potential ankyrin repeat 1 (TRPA1) gene expression via a hypoxia response element-like Motif to modulate cytokine release. Journal of Biological Chemistry, 287, 31962-31972. doi:10.1074/jbc.M112.361139
[29] Sitkovsky, M. and Lukashev, D. (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1[alpha] and adenosine receptors. Nature Reviews Immunology, 5, 712-721. doi:10.1038/nri1685
[30] Stolz, A. and Wolf, D.H. (2010) Endoplasmic reticulum associated protein degradation: A chaperone assisted journey to hell. Biochimica et Biophysica Acta (BBA)— Molecular Cell Research, 1803, 694-705. doi:10.1016/j.bbamcr.2010.02.005
[31] Ludwig, S., Klitzsch, A. and Baniahmad, A. (2011) The ING tumor suppressors in cellular senescence and chromatin. Cell & Bioscience, 1, 25. doi:10.1186/2045-3701-1-25
[32] Chen, G., Wang, Y., Garate, M., Zhou, J. and Li, G. (2010) The tumor suppressor ING3 is degraded by SCFSkp2mediated ubiquitin-proteasome system. Oncogene, 29, 1498-1508. doi:10.1038/onc.2009.424
[33] Kirchmaier, A.L. (2011) Ub-family modifications at the replication fork: Regulating PCNA-interacting components. FEBS Letters, 585, 2920-2928. doi:10.1016/j.febslet.2011.08.008
[34] Mahler, M., Miyachi, K., Peebles, C. and Fritzler, M.J. (2012) The clinical significance of autoantibodies to the proliferating cell nuclear antigen (PCNA). Autoimmunity Reviews, 11, 771-775. doi:10.1016/j.autrev.2012.02.012
[35] Archacki, S.R., Angheloiu, G., Moravec, C.S., Liu, H., Topol, E.J. and Wang, Q.K. (2012) Comparative gene expression analysis between coronary arteries and internal mammary arteries identifies a role for the TES gene in endothelial cell functions relevant to coronary artery disease. Human Molecular Genetics, 21, 1364-1373. doi:10.1093/hmg/ddr574
[36] Weeks, R., Kees, U., Song, S. and Morison, I. (2010) Silencing of TESTIN by dense biallelic promoter methylation is the most common molecular event in childhood acute lymphoblastic leukaemia. Molecular Cancer, 9, 163. doi:10.1186/1476-4598-9-163
[37] Ma, H., Weng, D., Chen, Y., Huang, W., Pan, K., Wang, H., Sun, J., Wang, Q., Zhou, Z., Wang, H. and Xia, J. (2010) Extensive analysis of D7S486 in primary gastric cancer supports TESTIN as a candidate tumor suppressor gene. Molecular Cancer, 9, 190. doi:10.1186/1476-4598-9-190
[38] Seong, H.-A., Kim, K.-T. and Ha, H. (2003) Enhancement of B-MYB transcriptional activity by ZPR9, a novel zinc finger protein. Journal of Biological Chemistry, 278, 9655-9662. doi:10.1074/jbc.M207478200

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.