Synthesis, Characterizations and in Vitro Assessment of the Cytotoxicity and Genotoxicity of Novel Silicon Nitride-Based Porous Ceramics

Download Download as PDF (Size:2342KB)  HTML    PP. 407-418  
DOI: 10.4236/msa.2013.47050    1,929 Downloads   3,290 Views   Citations

ABSTRACT

Porous Si3N4-SiO2-based ceramics with different porosity were prepared via free sintering of Si3N4 on air with an addition of semolina (5, 10 and 20 wt%) as a pore-forming agent. The semolina content in the starting powder controlled the volume fraction of pores in the sintered body. Small pores (<5 μm) formed a continuous network in the whole volume of the ceramic material, while the large pores (~100 μm), formed from the added semolina were mostly isolated in the ceramic matrix. Mercury porosimetry and strength measurements have shown that specific surface area, volume density and compressive strength decreased with the amount of semolina in the samples. Mechanical properties similar to bone were obtained for the sample with 20 wt% semolina pore forming agent (compressive strength 350 MPa, density 2.17 g.cm-3). The prepared Si3N4-SiO2-based ceramics were evaluated for cytotoxic and genotoxic potential on human fibroblast VH10 and B-HNF-1 cells. Biological tests have shown that both these human fibroblast cell lines were sensitive to the samples with lower porosity and cell growth inhibition was observed in the range 14.9% - 21.3%. The cytotoxicity of the sample with the highest porosity (~40%) was not significant (<10%). The microscopic observations have shown that VH10 and B-HNF-1 cells growing around the silicon nitride ceramic discs were homogeneously distributed on the cultivation surface. No significant morphologic changes were found in treated cells, their morphology was very similar to that of the control cells. None of the tested Si3N4-based ceramic samples induced necrotic/apoptotic death of human fibroblasts. Sample S-20 had similar properties to bones and was characterized by very good biocompatibility, slight cytotoxicity and none genotoxicity. Therefore, Si3N4-SiO2-based ceramics prepared by free sintering on air are potential biomaterials for medical applications.

Cite this paper

M. Hnatko, Z. Lenčéš, P. Čopan, L. Birošová, P. Matejov and S. Jantová, "Synthesis, Characterizations and in Vitro Assessment of the Cytotoxicity and Genotoxicity of Novel Silicon Nitride-Based Porous Ceramics," Materials Sciences and Applications, Vol. 4 No. 7, 2013, pp. 407-418. doi: 10.4236/msa.2013.47050.

References

[1] B. Cappi, S. Neuss, J. Salber, R. Telle, R. Knüchel and H. Fischer, “Cytocompatibility of High Strength Non-Oxide Ceramics,” Journal of Biomedical Materials Research, Vol. 93, No. 1, 2009, pp. 67-76.
[2] F. Bucciotti, M. Mazzocchi and A. Bellosi, “Perspectives of the Si3N4-TiN Ceramic Composite as a Biomaterial and Manufacturing of Complex-Shaped Implantable Devices by Electrical Discharge Machining (EDM),” Journal of Applied Biomaterials and Biomechanics, Vol. 8, No. l, 2010, pp. 28-32.
[3] M. C. Anderson and R. Olsen, “Bone Ingrowth into Porous Silicon Nitride,” Journal of Biomedical Materials Research, Vol. 92, No. 4, 2010, pp. 1598-1605.
[4] M. Mazzocchi and A. Bellosi, “On the Possibility of Silicon Nitride as a Ceramic for Structural Orthopaedic Implantans. Part I: Processing, Microstructure, Mechanical Properties, Cytotoxicity,” Journal of Materials Science: Materials in Medicine, Vol. 19, 2008, pp. 2881-2887. doi:10.1007/s10856-008-3417-2
[5] M. Mazzocchi, D. Gardini, P. L. Traverso, M. G. Faga and A. Bellosi, “On the Possibility of Silicon Nitride as a Ceramic for Structural Orthopaedic Implantans. Part II: Chemical Stability and Wear Resistance in Body Environment,” Journal of Materials Science: Materials in Medicine, Vol. 19, 2008, pp. 2889-2901. doi:10.1007/s10856-008-3437-y
[6] A. Neumann, M. Kramps, C. Ragoss, H. R. Maier and K. Jahnke, “Histological and Microdiographic Appearences of Silicon Nitride and Aluminium Oxide in a Rabbit Femur Implantation Model,” Materialwissenschaft und Werkstofftechnik, Vol. 35, No. 9, 2004, pp. 569-573. doi:10.1002/mawe.200400778
[7] A. Neumann, K. Jahnke, H. R. Maier and C. Ragoss, “Biocompatibility of Silicon Nitride in Vitro. A Comparative Fluorescence-Microscopic and Scanning ElectronMicroscopy Study,” Laryngo-Rhino-Otologie, Vol. 83, 2004, pp. 845-851. doi:10.1055/s-2004-825739
[8] A. Neumann, T. Reske, M. Held, C. Ragoss, H. R. Maier and K. Jahnke, “Comparative Investigation of the Biocompatibility of Various Silicon Nitride Ceramic Qualities in Vitro,” Journal of Materials Science: Materials in Medicine, Vol. 15, No. 10, 2004, pp. 1135-1140. doi:10.1023/B:JMSM.0000046396.14073.92
[9] R. C. Kue, A. Sohrabi, D. C. Nagle, C. G. Frondoza and D. S. Hungerford, “Enhanced Proliferation and Osteocalcin Production by Human Osteoblast-Like Cells on Silicon Nitride Ceramic Discs,” Biomaterials, Vol. 20, No. 13, 1999, pp. 1195-1201. doi:10.1016/S0142-9612(99)00007-1
[10] A. Sohrabi, C. Holland, R. C. Kue, D. Nagle, D. S. Hungerford and C. G. Frondoza, “Proinflammatory Cytokine Expression of IL-1b and TNF-a by Human OsteoblastLike MG-63 Cells upon Exposure to Silicon Nitride in Vitro,” Journal of Biomedical Materials Research, Vol. 50, 2000, pp. 43-49. doi:10.1002/(SICI)1097-4636(200004)50:1<43::AID-JBM7>3.0.CO;2-A
[11] C. R. Howlett, E. McCartney and W. Ching, “The Effect of Silicon Nitride Ceramic on Rabbit Skeletal Cell Tissue: An in Vitro and in Vivo Investigation,” Clinical Orthopaedics and Related Research, Vol. 244, 1989, pp. 293304.
[12] C. C. Guedes e Silva, B. Konig, M. J. Carbonari, M. Yoshimoto, S. Allegrini and J. C. Bressiani, “Tissue Response around Silicon Nitride Implants in Rabbits,” Journal of Biomedical Materials Research, Vol. 84A, No. 2, 2008, pp. 337-343. doi:10.1002/jbm.a.31363
[13] C. C. Guedes e Silva, O. Z. Higa and J. C. Bressiani, “Cytotoxic Evaluation of Silicon Nitride Based Ceramics,” Materials Science and Engineering: C, Vol. 24, No. 5, 2004, pp. 643-646. doi:10.1016/j.msec.2004.08.007
[14] W. Zhang, M. Titze, B. Cappi, D. C. Wirtz and R. Telle, “Improved Mechanical Long-Term Reliability of Hip Resurfacing Prostheses by Using Silicon Nitride,” Journal of Materials Science: Materials in Medicine, Vol. 21, 2010, pp. 3049-3057. doi:10.1007/s10856-010-4144-z
[15] B. S. Bal, R. Lakshminarayanan, A. Khandkar, I. Clarke, A. A. Hoffman and M. N. Rahaman, “In Vitro Performance of Silicon Nitride Ceramic in Total Hip Bearings: Winner of the 2007 ‘HAP’ Paul Award,” Journal of Arthroplasty, Vol. 24, No. 1, 2009, pp. 110-116. doi:10.1016/j.arth.2008.01.300
[16] J. Gustavsson, G. Altankov, A. Errachid, J. Samitier, J. A. Planell and E. Engel, “Surface Modifications of Silicon Nitride for Cellular Biosensor Applications,” Journal of Materials Science: Materials in Medicine, Vol. 19, 2008, pp. 1839-1850. doi:10.1007/s10856-008-3384-7
[17] G. Kotzar, M. Freas, P. Abel, A. Fleischman, S. Roy, C. Zorman, J. M. Moran and J. Melzak, “Evaluation of MEMS Materials of Construction for Implantable Medical Devices,” Biomaterials, Vol. 23, No. 13, 2002, pp. 2737-2750. doi:10.1016/S0142-9612(02)00007-8
[18] G. Voskerician, M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima and R. Langer, “Biocompatibility and Biofouling of MEMS Drug Delivery Devices,” Biomaterials, Vol. 24, No. 11, 2003, pp. 1959-1967. doi:10.1016/S0142-9612(02)00565-3
[19] S. G. Harris and M. L. Shuler, “Growth of Endothelial Cells on Microfabricated Silicon Nitride Membranes for an in Vitro Model of the Blood-Brain Barrier,” Biotechnology and Bioprocess Engineering, Vol. 8, No. 4, 2003, pp. 246-251.
[20] R. M. Mesquita and A. H. A. Bressiani, “Fabrication of Porous Silicon Nitride by Sacrificing Template Method,” Science and Technology of Advanced Materials, Vol. 63, 2010, pp. 170-174. doi:10.4028/www.scientific.net/AST.63.170
[21] D. X. Yao, Y.-P. Zeng, K.-H. Zuo and D. L. Jiang, “Porous Si3N4 Ceramics Prepared via Nitridation of Si Powder with Si3N4 Filler and Postsintering,” International Journal of Applied Ceramic Technology, Vol. 1, No. 1, 2011, pp. 1-7.
[22] J. Xu, D. Zhu, F. Luo, W. Zhou and P. Li, “Dielectric Properties of Porous Reaction-Boned Si3N4 Ceramics with Controlled Porosity and Pore Size,” Journal of Materials Science and Technology, Vol. 24, No. 2, 2008, pp. 207-210.
[23] C. R. Rambo, H. Sieber and L. A. Genova, “Synthesis of Porous Biomorphic α/β-Si3N4 Composite from Sea Sponge,” Journal of Porous Materials, Vol. 15, No. 4, 2008, pp. 419-425. doi:10.1007/s10934-007-9101-y
[24] A. Díaz and S. Hampshire, “Characterisation of Porous Silicon Nitride Materials Produced with Starch,” Journal of the European Ceramic Society, Vol. 24, No. 2, 2004, pp. 413-419. doi:10.1016/S0955-2219(03)00212-7
[25] S. Ding, Z. P. Zeng and D. Jiang, “Oxidation Bonding of Porous Silicon Nitride Ceramics with High Strenght and Low Dielectric Constant,” Materials Letters, Vol. 61, No. 11-12, 2007, pp. 2277-2280. doi:10.1016/j.matlet.2006.08.067
[26] B. T. Lee and H. D. Kim, “Effect of Sintering Additives on the Nitridation Behaviour of Reaction Bonded Silicon Nitride,” Materials Science and Engineering, Vol. A364, 2004, pp. 126-131.
[27] F. L. Yu, H. R. Wang, Y. Bai and J. F. Yang, “Preparation and Characterization of Porous Si3N4 Ceramics Prepared by Compression Molding and Slip Casting Methods,” Bulletin of Materials Science, Vol. 33, No. 5, 2010, pp. 619-624. doi:10.1007/s12034-010-0094-9
[28] J. F. Yang, Z. Y. Deng and T. Ohji, “Fabrication and Characterization of Porous Silicon Nitride Ceramics Using Yb2O3 as Sintering Additive,” Journal of the European Ceramic Society, Vol. 23, No. 2, 2003, pp. 371-378. doi:10.1016/S0955-2219(02)00175-9
[29] F. Chen, Q. Shen, F. Yan and L. Zhang, “Pressureless Sintering of α-Si3N4 Porous Ceramics Using a H3PO4 Pore-Forming Agent,” Journal of the American Ceramic Society, Vol. 90, No. 8, 2007, pp. 2379-2383. doi:10.1111/j.1551-2916.2007.01800.x
[30] M. Theisova, S. Jantová, S. Letasiová, L. Valík and M. Palou, “Comparative Study of a New Composite Biomaterial Fluor-Hydroxyapatite on Fibroblast Cell Line NIH3T3 by Direct Test,” Biologia, Vol. 63, No. 2, 2008, pp. 273-281. doi:10.2478/s11756-008-0043-x
[31] H. U. Bergmeier, “Methoden der Enzymatischen Analyse,” 2nd Edition, Akademie Verlag, Berlin, 1970.
[32] S. Jantová, M. Theiszová, P. Matejov and D. Bakos, “Biocompatibility and Cytotoxicity of Bioglass-Ceramic Composite with Various P2O5 Content in Li2O-SiO2CaO-CaF2-P2O5 System on Fibroblast Cell Lines,” Acta Chimica Slovaca, Vol. 4, No. 1, 2011, pp. 15-30.
[33] V. J. McKelvey-Martin, M. H. Green, P. Schmezer, B. L. Pool-Zobel, M. P. De Méo and A. R. Colins, “The Single Cell Gel Electrophoresis Assay (Comet Assay): A European Review,” Mutation Research, Vol. 288, No. 1, 1993, pp. 47-63. doi:10.1016/0027-5107(93)90207-V
[34] N. P. Singh, M. T. McCoy, R. R. Tice and E. L. Schneider, “A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells,” Experimental Cell Research, Vol. 175, 1988, pp. 84-91. doi:10.1016/0014-4827(88)90265-0
[35] D. Slameňova, A. Gabelova, L. Ruzekova, I. Chalupa, E. Horvathova, T. Farkasova, E. Bozsakyova and R. Stetina, “Detection of MNNG-Induced DNA Lesions in Mammalian Cells; Validation of Comet Assay against DNA Unwiding Technique, Alkaline Elution of DNA and Chromosomal Aberrations,” Mutation Research, Vol. 383, 1997, pp. 243-252. doi:10.1016/S0921-8777(97)00007-4
[36] A. Gabelova, D. Slameňova, L. Ruzekova, T. Farkasova and E. Horvathova, “Measurement of DNA Strand Breakage and DNA Repair Induced with Hydrogen Peroxide Using Single Cell Gel Electrophoresis, Alkaline DNA Unwinding and Alkaline Elution of DNA,” Neoplasma, Vol. 44, No. 6, 1997, pp. 380-388.
[37] A. R. Collins, A. G. Ma and S. J. Duthie, “The Kinetics of Repair of Oxidative DNA Damage (Strand Breaks and Oxidised Pyrimidines) in Human Cells,” Mutation Research/DNA Repair, Vol. 336, No. 1, 1995, pp. 69-77. doi:10.1016/0921-8777(94)00043-6
[38] S. Wada, “Control of Instability of Si3N4 during Pressureless Sintering,” Journal of the Ceramic Society of Japan, Vol. 109, No. 1247, 2001, pp. 803-808. doi:10.2109/jcersj.109.1274_803
[39] G. D. Sorarù, S. Modena, E. Guadagnino, P. Colombo, J. Egan and C. Pantano, “Chemical Durability of Oxycarbide Glasses,” Journal of the American Ceramic Society, Vol. 85, No. 6, 2002, pp. 1529-1536. doi:10.1111/j.1151-2916.2002.tb00308.x
[40] M. Amaral, M. A. Lopes, R. F. Silva and J. D. Santos, “Densification Route and Mechanical Properties of Si3N4Bioglass Biocomposites,” Biomaterials, Vol. 23, No. 3, 2002, pp. 857-862. doi:10.1016/S0142-9612(01)00194-6
[41] M. Amaral, M. A. Costa, M. A. Lopes, R. F. Silva, J. D. Santos and M. H. Fernandes, “Si3N4-Bioglass Composites Stimulate the Proliferation of MG63 Osteoblast-Like Cells and Support the Osteogenic Differentiation of Human Bone Marrow Cells,” Biomaterials, Vol. 23, No. 24, 2002, pp. 4897-4906. doi:10.1016/S0142-9612(02)00249-1
[42] M. F. Morks, “Fabrication and Characterization of Plasma-Sprayed HA/SiO2 Coatings for Biomedical Application,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 1, No. 1, 2008, pp. 105-111. doi:10.1016/j.jmbbm.2007.04.003
[43] A. Diaz, T. Lopez, J. Manjarrez, E. Basadella, J. M. Martinez-Blanes and J. A. Odriozola, “Growth of Hydroxyapatite in a Biocompatible Mesoporous Ordered Silica,” Acta Biomaterialia, Vol. 2, No. 2, 2006, pp. 173-179. doi:10.1016/j.actbio.2005.12.006
[44] Y. Xie, X. Zheng, C. Ding, X. Liu and P. K. Chu, “Mechanism of Apatite Formation on Silicon Suboxide Film Prepared by Pulsed Metal Vacuum Arc Deposition,” Materials Chemistry and Physics, Vol. 109, No. 2-3, 2008, pp. 342-346. doi:10.1016/j.matchemphys.2007.11.039
[45] S. Zhang, L. Xia, C. H. Kang, G. Xiao, S. M. Ong, Y. C. Toh, H. L. Leo, D. van Noort, S. H. Kan, H. H. Tang and H. Yu, “Microfabricated Silicon Nitride Membranes for Hepatocyte Sandwich Culture,” Biomaterials, Vol. 29, No. 29, 2008, pp. 3993-4002. doi:10.1016/j.biomaterials.2008.06.024
[46] A. J. Dulgar-Tulloch, R. Biyios and R. W. Siegel, “Human Mesenchymal Stem Cell Adhesin and Proliferation in Response to Ceramic Chemistry and Nanoscale Topography,” Journal of Biomedical Materials Research Part A, Vol. 90A, No. 2, 2009, pp. 586-594. doi:10.1002/jbm.a.32116
[47] J. Gustavsson, G. Altankov, A. Errachid, J. Samitier, J. A. Planell and E. Engel, “Surface Modifications of Silicon Nitride for Cellular Biosensor Applications,” Journal of Materials Science: Materials in Medicine, Vol. 19, No. 4, 2008, pp. 1839-1850. doi:10.1007/s10856-008-3384-7
[48] E. A. Carter, B. S. Rayner, A. I. McLeod, L. E. Wu, C. P. Marshall, A. Levina, J. B. Aitken, P. K. Witting, B. Lai, Z. Cai, S. Vogt, Y. C. Lee, C. I. Chen, M. J. Tobin, H. H. Harris and P. A. Lay, “Silicon Nitride as a Versatile Growth Substrate for Microspectroscopic Imaging and Mapping of Individual Cells,” Molecular BioSystems, Vol. 6, No. 7, 2010, pp. 1316-1322. doi:10.1039/c001499k
[49] I. Svensson, E. Artursson, P. Leanderson, R. Berglind and F. Lindgren, “Toxicity in Vitro of Some Silicon Carbides and Silicon Nitrides: Whiskers and Powders,” American Journal of Industrial Medicine, Vol. 31, No. 3, 1997, pp. 335-343. doi:10.1002/(SICI)1097-0274(199703)31:3<335::AID-AJIM10>3.0.CO;2-1
[50] G. L. Fisher, K. L. McNeill and J. T. Smith, “In Vitro Effects of Fibrous and Nonfibrous Silicon Nitride on Bovine Pulmonary Macrophages,” Environmental Research, Vol. 50, No. 2, 1989, pp. 279-288.

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.