Diabetes, an inflammatory process: Oxidative Stress and TNF-alpha involved in hepatic complication

Abstract

Diabetes mellitus (DM) is a serious and growing worldwide health problem and is associated with severe acute and chronic complications that negatively influence both quality of life and survival of affected individuals. It is a heterogeneous deregulation of carbohydrate metabolism. The liver is a central regulator of carbohydrate homeostasis and releases glucose according to metabolic demands. In the last years, the liver injury has been recognized as a major complication of DM. In fact, evidence suggests that in diabetic patients, the mortality rate due to liver cirrhosis is even higher than that due to cardiovascular disease and it has been suggested that there is a two-fold increased risk of liver disease in diabetic patients. Among the different types of diabetes, we analyze type 1 diabetes mellitus as a chronic disorder and an inflammatory process, which is also associated with increased risk of chronic liver injury. Animal models have contributed extensively to the study of diabetes, and it is well established that administration of a unique dose of streptozotocin (STZ) induces insulin-dependent type 1 diabetes mellitus. We analyzed the contribution of Tumor Necrosis Factor alpha (TNF-α) intracellular pathway and oxidative stress in the development of apoptosis in the liver of streptozotocin-induced diabetic animals. In this review, we describe the role of upstream mediators of the interaction between TNF-α and its receptor, TNF-R1, by assessing the ability of the in vivo treatment with etanercept (TNF-α blocking antibody) to protect against TNF-α-induced apoptosis. Also, we studied the role of iNOS-induction in the TNF-α-induced liver apoptosis by type 1 diabetes, by treatment of diabetic rats with aminoguanidine (selective iNOS inhibitor), which blocked the induction of apoptosis. Interestingly, iNOS inhibition significantly reduced TNF-α levels, evidencing an interaction between TNF-α and iNOS activity. On the other hand, we found that the administration of antioxidants/hydroxyl radical scavengers (Tempol and Desferal) prevented oxidative stress by reducing the effects of hydroxyl radical production and both lipid peroxidation (LPO) levels and apoptosis. Taken together, our studies support that, at least in part, the hydroxyl radical acts as a reactive intermediate, which leads to liver apoptosis in a model of STZ-mediated hyperglycemia. Conclusion and Future: The relevance of the present review is to provide further knowledge about the mechanisms which may contribute to the disease process in the liver during the course of an inflammatory process as it is type 1 diabetes. Regulation of hepatic TNF-α levels and oxidative stress in the diabetic state could be of therapeutic relevance for the improvement or delay of the hepatic complications linked to chronic hyperglycemia.

Share and Cite:

Francés, D. , Ingaramo, P. , Ronco, M. and Carnovale, C. (2013) Diabetes, an inflammatory process: Oxidative Stress and TNF-alpha involved in hepatic complication. Journal of Biomedical Science and Engineering, 6, 645-653. doi: 10.4236/jbise.2013.66079.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pietropaolo, M., Barinas-Mitchell, E., et al. (2007) The heterogeneity of diabetes: Unraveling a dispute: Is systemic inflammation related to islet autoimmunity? Diabetes, 56, 1189-1197. doi:10.2337/db06-0880
[2] Dey, A. and Swaminathan, K. (2010) Hyperglycemiainduced mitochondrial alterations in liver. Life Science, 87, 197-214. doi:10.1016/j.lfs.2010.06.007
[3] Tierney, L.M. and M. S. a. P. M. (2002) Current medical Diagnosis & Treatment, 1203-1215.
[4] Kasuga, M. (2006) Insulin resistance and pancreatic beta cell failure. Journal of Clinical Investigation, 116, 17561760. doi:10.1172/JCI29189
[5] Wild, S., Roglic, G., et al. (2004) Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047-1053. doi:10.2337/diacare.27.5.1047
[6] Shaw, J.E., Sicree, R.A., et al. (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87, 4-14. doi:10.1016/j.diabres.2009.10.007
[7] Kikutani, H. and Makino, S. (1992) The murine autoimmune diabetes model: NOD and related strains. Advances in Immunology, 51, 285-322. doi:10.1016/S0065-2776(08)60490-3
[8] Rees, D.A. and Alcolado, J.C. (2005) Animal models of diabetes mellitus. Diabetic Medicine, 22, 359-370. doi:10.1111/j.1464-5491.2005.01499.x
[9] Carnovale, C.E. and Rodriguez Garay, E.A. (1984) Reversible impairment of hepatobiliary function induced by streptozotocin in the rat. Experientia, 40, 248-250. doi:10.1007/BF01947564
[10] Carnovale, C.E., Marinelli, R.A., et al. (1986) Bile flow decrease and altered bile composition in streptozotocintreated rats. Biochemical Pharmacology, 35, 2625-2628. doi:10.1016/0006-2952(86)90063-8
[11] Mordes, J.P., Bortell, R., et al. (2004) Rat models of type 1 diabetes: Genetics, environment, and autoimmunity. ILAR Journal, 45, 278-291. doi:10.1093/ilar.45.3.278
[12] Carnovale, C.E., Marinelli, R.A., et al. (1987) Toxic effect of streptozotocin on the biliary secretion of nicotinamide-treated rats. Toxicology Letters, 36, 259-265. doi:10.1016/0378-4274(87)90194-9
[13] Wellen, K.E. and Hotamisligil, G.S. (2005) Inflammation, stress, and diabetes. Journal of Clinical Investigation, 115, 1111-1119. doi:10.1172/JCI25102
[14] Dandona, P., Aljada, A., et al. (2004) Inflammation: The link between insulin resistance, obesity and diabetes. Trends in Immunology, 25, 4-7. doi:10.1016/j.it.2003.10.013
[15] Willerson, J.T. and Ridker, P.M. (2004) Inflammation as a cardiovascular risk factor. Circulation, 109, II2-10. doi:10.1161/01.CIR.0000129535.04194.38
[16] Ahrens, B. (2011) Antibodies in metabolic diseases. New Biotechnology, 28, 530-537. doi:10.1016/j.nbt.2011.03.022
[17] Venieratos, P.D., Drossopoulou, G.I., et al. (2010) High glucose induces suppression of insulin signalling and apoptosis via upregulation of endogenous IL-1beta and suppressor of cytokine signalling-1 in mouse pancreatic beta cells. Cell Signal, 22, 791-800. doi:10.1016/j.cellsig.2010.01.003
[18] Alexandraki, K.I., Piperi, C., et al. (2008) Cytokine secretion in long-standing diabetes mellitus type 1 and 2: Associations with low-grade systemic inflammation. Journal of Clinical Immunology, 28, 314-321. doi:10.1007/s10875-007-9164-1
[19] Erbagci, A.B., Tarakcioglu, M., et al. (2001) Mediators of inflammation in children with type I diabetes mellitus: cytokines in type I diabetic children. Clinical Biochemistry, 34, 645-650. doi:10.1016/S0009-9120(01)00275-2
[20] Esposito, K., Nappo, F., et al. (2002) Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation, 106, 2067-2072. http://www.ncbi.nlm.nih.gov/pubmed/12379575
[21] Foss, N.T., Foss-Freitas, M.C., et al. (2007) Impaired cytokine production by peripheral blood mononuclear cells in type 1 diabetic patients. Diabetes & Metabolism, 33, 439-443. doi:10.1016/j.diabet.2007.10.001
[22] Elmarakby, A.A. and Sullivan, J.C. (2012) Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovascular Therapeutics, 30, 49-59. doi:10.1111/j.1755-5922.2010.00218.x
[23] Navarro-Gonzalez, J.F., Muros, M., et al. (2011) Pentoxifylline for renoprotection in diabetic nephropathy: The PREDIAN study. Rationale and basal results. Journal of Diabetes and Its Complications, 25, 314-319. doi:10.1016/j.jdiacomp.2010.09.003
[24] Fridovich, I. (1995) Superoxide radical and superoxide dismutases. Annual Review of Biochemistry, 64, 97-112. doi:10.1146/annurev.bi.64.070195.000525
[25] Selemidis, S., Sobey, C.G., et al. (2008) NADPH oxidases in the vasculature: Molecular features, roles in disease and pharmacological inhibition. Pharmacology & Therapeutics, 120, 254-291. doi:10.1016/j.pharmthera.2008.08.005
[26] Wang, K., Brems, J.J., et al. (2011) iNOS/NO signaling regulates apoptosis induced by glycochenodeoxycholate in hepatocytes. Cell Signal, 23, 1677-1685. doi:10.1016/j.cellsig.2011.06.003
[27] Dean, R.T., Fu, S., et al. (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochemical Journal, 324, 1-18. http://www.ncbi.nlm.nih.gov/pubmed/9164834
[28] Yu, B.P. (1994) Cellular defenses against damage from reactive oxygen species. Physiology Review, 74, 139-162. http://www.ncbi.nlm.nih.gov/pubmed/8295932
[29] Ames, B.N., Shigenaga, M.K., et al. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of USA, 90, 7915-7922. doi:10.1073/pnas.90.17.7915
[30] Beckman, J.S. and Koppenol, W.H. (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. American Journal of Physiology, 271, C1424-1437. http://www.ncbi.nlm.nih.gov/pubmed/8944624
[31] Buttke, T.M. and Sandstrom, P.A. (1994) Oxidative stress as a mediator of apoptosis. Immunology Today, 15, 7-10. doi:10.1016/0167-5699(94)90018-3
[32] Halliwell, B. (1997) Antioxidants and human disease: A general introduction. Nutrition Reviews, 55, S44-49. http://www.ncbi.nlm.nih.gov/pubmed/9155225
[33] Wiseman, H. and Halliwell, B. (1996) Damage to DNA by reactive oxygen and nitrogen species: Role in inflamematory disease and progression to cancer. Biochemical Journal, 313, 17-29. http://www.ncbi.nlm.nih.gov/pubmed/8546679
[34] Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813-820. doi:10.1038/414813a
[35] West, I.C. (2000). Radicals and oxidative stress in diabetes. Diabetic Medicine, 17, 171-180. http://www.ncbi.nlm.nih.gov/pubmed/10784220
[36] Ohkuwa, T., Sato, Y., et al. (1995) Hydroxyl radical formation in diabetic rats induced by streptozotocin. Life Sciences, 56, 1789-1798. doi:10.1016/0024-3205(95)00150-5
[37] Winiarska, K., Drozak, J., et al. (2004) Diabetes-induced changes in glucose synthesis, intracellular glutathione status and hydroxyl free radical generation in rabbit kidney-cortex tubules. Molecular and Cellular Biochemistry, 261, 91-98. doi:10.1023/B:MCBI.0000028742.83086.43
[38] Frances, D.E., Ronco, M.T., et al. (2010) Hyperglycemia induces apoptosis in rat liver through the increase of hydroxyl radical: New insights into the insulin effect. Journal of Endocrinology, 205, 187-200. doi:10.1677/JOE-09-0462
[39] Littlejohn, A.F., Tucker, S.J., et al. (2003) Modulation by caspases of tumor necrosis factor-stimulated c-Jun N-terminal kinase activation but not nuclear factor-kappaB signaling. Biochemical Pharmacology, 65, 91-99. doi:10.1016/S0006-2952(02)01443-0
[40] McFarlane, S.M., Pashmi, G., et al. (2002) Differential activation of nuclear factor-kappaB by tumour necrosis factor receptor subtypes. TNFR1 predominates whereas TNFR2 activates transcription poorly. FEBS Letters, 515, 119-126. doi:10.1016/S0014-5793(02)02450-X
[41] Srinivasan, K. and Ramarao, P. (2007) Animal models in type 2 diabetes research: An overview. The Indian Journal of Medical Research, 125, 451-472. http://www.ncbi.nlm.nih.gov/pubmed/17496368
[42] Joyce, D., Albanese, C., et al. (2001) NF-kappaB and cell-cycle regulation: The cyclin connection. Cytokine & Growth Factor Reviews, 12, 73-90. doi:10.1016/S1359-6101(00)00018-6
[43] Yamamoto, Y. and Gaynor, R.B. (2004) IkappaB kinases: Key regulators of the NF-kappaB pathway. Trends in Biochemical Sciences, 29, 72-79. doi:10.1016/j.tibs.2003.12.003
[44] Lim, J.W., Kim, H., et al. (2001) NF-kappaB, inducible nitric oxide synthase and apoptosis by Helicobacter pylori infection. Free Radical Biology & Medicine, 31, 355366. doi:10.1016/S0891-5849(01)00592-5
[45] Chen, Y.W., Chenier, I., et al. (2011) High glucose promotes nascent nephron apoptosis via NF-kappaB and p53 pathways. American Journal of Physiology Renal Physiology, 300, F147-156. doi:10.1152/ajprenal.00361.2010
[46] Karin, M. and Greten, F.R. (2005) NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nature Reviews. Immunology, 5, 749-759.
[47] Yang, W.S., Seo, J.W., et al. (2008) High glucose-induced NF-kappaB activation occurs via tyrosine phosphorylation of IkappaBalpha in human glomerular endothelial cells: Involvement of Syk tyrosine kinase. American Journal of Physiology Renal Physiology, 294, F1065F1075. doi:10.1152/ajprenal.00381.2007
[48] Zimmermann, K.C. and Green, D.R. (2001) How cells die: Apoptosis pathways. The Journal of Allergy and Clinical Immunology, 108, S99-S103. doi:10.1067/mai.2001.117819
[49] Curtin, J.F., Donovan, M., et al. (2002) Regulation and measurement of oxidative stress in apoptosis. Journal of Immunological Methods, 265, 49-72. doi:10.1016/S0022-1759(02)00070-4
[50] Lennon, S.V., Martin, S.J., et al. (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Proliferation, 24, 203-214. doi:10.1111/j.1365-2184.1991.tb01150.x
[51] Magowan, G. and Price, D.J. (1996) Trophic and outgrowth-promoting effects of K(+)-induced depolarization on developing thalamic cells in organotypic culture. Neuroscience, 74, 1045-1057. http://www.ncbi.nlm.nih.gov/pubmed/8895873
[52] Suzuki, Y., Ono, Y., et al. (1998) Rapid and specific reactive oxygen species generation via NADPH oxidase activation during Fas-mediated apoptosis. FEBS Letters, 425, 209-212. doi:10.1016/S0014-5793(98)00228-2
[53] Bai, J. and Odin, J.A. (2003) Apoptosis and the liver: Relation to autoimmunity and related conditions. Autoimmunity Reviews, 2, 36-42. doi:10.1016/S1568-9972(02)00125-8
[54] Ronco, M.T., de Alvarez, M.L., et al. (2002) Modulation of balance between apoptosis and proliferation by lipid peroxidation (LPO) during rat liver regeneration. Molecular Medicine, 8, 808-817. http://www.ncbi.nlm.nih.gov/pubmed/12606815
[55] Park, K.S., Kim, J.H., et al. (2001) Effects of insulin and antioxidant on plasma 8-hydroxyguanine and tissue 8-hydroxydeoxyguanosine in streptozotocin-induced diabetic rats. Diabetes, 50, 2837-2841. doi:10.2337/diabetes.50.12.2837
[56] Green, D.R. and Reed, J.C. (1998) Mitochondria and apoptosis. Science, 281, 1309-1312. doi:10.1126/science.281.5381.1309
[57] Liu, X., Kim, C.N., et al. (1996) Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell, 86, 147-157. doi:10.1016/S0092-8674(00)80085-9
[58] Nakagami, H., Morishita, R., et al. (2002) Hepatocyte growth factor prevents endothelial cell death through inhibition of bax translocation from cytosol to mitochondrial membrane. Diabetes, 51, 2604-2611. doi:10.2337/diabetes.51.8.2604
[59] Chatila, R. and West, A.B. (1996) Hepatomegaly and abnormal liver tests due to glycogenosis in adults with diabetes. Medicine, 75, 327-333. doi:10.1097/00005792-199611000-00003
[60] Harrison, S.A. (2006) Liver disease in patients with diabetes mellitus. Journal of Clinical Gastroenterology, 40, 68-76. doi:10.1097/01.mcg.0000190774.91875.d2
[61] McLennan, S.V., Heffernan, S., et al. (1991) Changes in hepatic glutathione metabolism in diabetes. Diabetes, 40, 344-348. http://www.ncbi.nlm.nih.gov/pubmed/1671844
[62] Saxena, A.K., Srivastava, P., et al. (1993) Impaired antioxidant status in diabetic rat liver. Effect of vanadate. Biochemical Pharmacology, 45, 539-542. http://www.ncbi.nlm.nih.gov/pubmed/8442752
[63] Bell, D.S. and Allbright, E. (2007) The multifaceted associations of hepatobiliary disease and diabetes. Endocrine Practice, 13, 300-312. http://www.ncbi.nlm.nih.gov/pubmed/17599864
[64] Hinokio, Y., Suzuki, S., et al. (1999) Oxidative DNA damage in diabetes mellitus: Its association with diabetic complications. Diabetologia, 42, 995-998.
[65] Ingaramo, P.I., Ronco, M.T., et al. (2011) Tumor necrosis factor alpha pathways develops liver apoptosis in type 1 diabetes mellitus. Molecular Immunology, 48, 1397-1407.
[66] Suzuki, S., Hinokio, Y., et al. (1999) Oxidative damage to mitochondrial DNA and its relationship to diabetic complications. Diabetes Research and Clinical Practice, 45, 161-168. http://www.ncbi.nlm.nih.gov/pubmed/10588369
[67] Jones, B.E., Lo, C.R., et al. (2000) Hepatocytes sensitized to tumor necrosis factor-alpha cytotoxicity undergo apoptosis through caspase-dependent and caspase-independent pathways. The Journal of Biological Chemistry, 275, 705-712. http://www.ncbi.nlm.nih.gov/pubmed/10617670
[68] Koniaris, L.G., McKillop, I.H., et al. (2003) Liver regeneration. Journal of the American College of Surgeons, 197, 634-659.
[69] Patel, T., Steer, C.J., et al. (1999) Apoptosis and the liver: A mechanism of disease, growth regulation, and carcinogenesis. Hepatology, 30, 811-815.
[70] Hsu, H., Shu, H.B., et al. (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell, 84, 299-308. doi:10.1016/S0092-8674(00)80984-8
[71] Cottet, S., Dupraz, P., et al. (2002) CFLIP protein prevents tumor necrosis factor-alpha-mediated induction of caspase-8-dependent apoptosis in insulin-secreting betaTc-Tet cells. Diabetes, 51, 1805-1814. http://www.ncbi.nlm.nih.gov/pubmed/12031968
[72] Zhao, Y., Ding, W.X., et al. (2003) Bid activates multiple mitochondrial apoptotic mechanisms in primary hepatocytes after death receptor engagement. Gastroenterology, 125, 854-867. http://www.ncbi.nlm.nih.gov/pubmed/12949730
[73] Zhao, Y., Li, S., et al. (2001) Activation of pro-death Bcl-2 family proteins and mitochondria apoptosis pathway in tumor necrosis factor-alpha-induced liver injury. The Journal of Biological Chemistry, 276, 27432-27440.
[74] Wullaert, A., Heyninck, K., et al. (2006) Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochemical Pharmacology, 72, 1090-1101. doi:10.1016/j.bcp.2006.07.003
[75] Boden, G. She,, P., et al. (2005) Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes, 54, 3458-3465. http://www.ncbi.nlm.nih.gov/pubmed/16306362
[76] Romagnoli, M., Gomez-Cabrera, M.C., et al. (2010) Xanthine oxidase-induced oxidative stress causes activetion of NF-kappaB and inflammation in the liver of type I diabetic rats. Free Radical Biology and Medicine, 49, 171-177. doi:10.1016/j.freeradbiomed.2010.03.024
[77] Powell, L.A., Warpeha, K.M., et al. (2004) High glucose decreases intracellular glutathione concentrations and upregulates inducible nitric oxide synthase gene expression in intestinal epithelial cells. Journal of Molecular Endocrinology, 33, 797-803. doi:10.1677/jme.1.01671
[78] Stadler, K., Bonini, M.G., et al. (2008) Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes. Free Radical Biology & Medicine, 45, 866-874.
[79] Noh, H., Ha, H., et al. (2002). High glucose increases inducible NO production in cultured rat mesangial cells. Possible role in fibronectin production. Nephron, 90, 78-85. http://www.ncbi.nlm.nih.gov/pubmed/11744809

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.