Influence of Alloy Elements on the Osteoconductivity of Anodized Ti-29Nb-13Ta-4.6Zr Alloy

Abstract

Anodizing is expected to be an effective method to improve the osteoconductivity of the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy because the bioactivity of anodized Ti is good. However, it is not known how the alloy elements influence the surface roughness, composition, hydrophilicity, and osteoconductivity of the anodized film on the Ti alloy. In this study, we investigated the effects of anodizing on the surface properties and the osteoconductivity of the anodized TNTZ alloy, focusing on the functions of the individual alloy elements. The anodized oxides of the Nb, Ta, and Zr metals were hydrophobic at all the voltages applied, in contrast to the anodized oxide of Ti. As well as pure Ti, a TiO2-based oxide film formed on TNTZ after anodizing. However, the oxide film also contained large amounts of Nb species and the molar Nb/Ti ratio in the TNTZ alloy was high, which makes the surface more hydrophobic than the anodized oxide on Ti. In vivo tests showed that the osteoconductivity of the TNTZ alloy was sensitive to both its surface roughness and hydrophilicity. When the TNTZ alloy was anodized, the process increased either the surface hydrophobicity or the surface roughness at the voltage used in this study. These changes in the surface properties did not improve its osteoconductivity.

Share and Cite:

D. Yamamoto, A. Waki, K. Kuroda, R. Ichino, M. Okido, M. Ueda, M. Ikeda, M. Niinomi and A. Seki, "Influence of Alloy Elements on the Osteoconductivity of Anodized Ti-29Nb-13Ta-4.6Zr Alloy," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 3, 2013, pp. 229-236. doi: 10.4236/jbnb.2013.43028.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui and S. Niwa, “Development of Low Rigidity β-Type Titanium Alloy for Biomedical Applications,” Materials Transactions, Vol. 43, No. 12, 2002, pp. 29702977. doi:10.2320/matertrans.43.2970
[2] M. Niinomi, “Mechanical Properties of Biomedical Titanium Alloys,” Materials Science and Engineering: A, Vol. 243, No. 1-2, 1998, pp. 231-236. doi:10.1016/S0921-5093(97)00806-X
[3] D. Yamamoto, K. Kuroda, R. Ichino and M. Okido, “Anodic Oxide Coatings on Ti Alloys and Their Osteoconductivity,” Materials Science Forum, Vol. 706-709, 2012, pp. 612-616. doi:10.4028/www.scientific.net/MSF.706-709.612
[4] L. L. Hench and J. Wilson, “An Introduction to Bioceramics,” World Scientific, Singapore, 1993. doi:10.1142/2028
[5] K. Kuroda, R. Ichino, M. Okido and O. Takai, “Hydroxyapatite Coating on Titanium by Thermal Substrate Method in Aqueous Solution,” Journal of Biomedical Materials Research Part A, Vol. 59, No. 2, 2002, pp. 390-397. doi:10.1002/jbm.10002
[6] K. Kuroda, R. Ichino, M. Okido and O. Takai, “Effects of Ion Concentration and pH on Hydroxyapatite Deposition from Aqueous Solution onto Titanium by the Thermal Substrate Method,” Journal of Biomedical Materials Research Part A, Vol. 61, No. 3, 2002, pp. 354-359. doi:10.1002/jbm.10197
[7] K. Kuroda, Y. Miyashita, R. Ichino, M. Okido and O. Takai, “Preparation of Calcium Phosphate Coatings on Titanium Using the Thermal Substrate Method and Their in Vitro Evaluation,” Materials Transactions, Vol. 43, No. 12, 2002, pp. 3015-3019. doi:10.2320/matertrans.43.3015
[8] K. Kuroda, S. Nakamoto, R. Ichino, M. Okido and R. M. Pilliar, “Hydroxyapatite Coatings on a 3D Porous Surface Using Thermal Substrate Method,” Materials Transactions, Vol. 46, No. 7, 2005, pp. 1633-1635. doi:10.2320/matertrans.46.1633
[9] K. Kuroda, S. Nakamoto, Y. Miyashita, R. Ichino and M Okido, “Osteoinductivity of HAp Films with Different Surface Morphologies Coated by the Thermal Substrate Method in Aqueous Solutions,” Materials Transactions, Vol. 47, No. 5, 2006, pp. 1391-1394. doi:10.2320/matertrans.47.1391
[10] K. Kuroda, M. Moriyama, R. Ichino, M. Okido and A. Seki, “Formation and in Vivo Evaluation of Carbonate Apatite and Carbonate Apatite/CaCO3 Composite Films Using the Thermal Substrate Method in Aqueous Solution,” Materials Transactions, Vol. 49, No. 6, 2008, pp. 14341440. doi:10.2320/matertrans.MRA2007330
[11] K. Kuroda, M. Moriyama, R. Ichino, M. Okido and A. Seki, “Formation and Osteoconductivity of Hydroxyapatite/Collagen Composite Films Using a Thermal Substrate Method in Aqueous Solutions,” Materials Transactions, Vol. 50, No. 5, 2009, pp. 1190-1195. doi:10.2320/matertrans.MRA2008459
[12] K. Kuroda and M. Okido, “Hydroxyapatite Coating of Titanium Implants Using Hydroprocessing and Evaluation of Their Osteoconductivity,” Bioinorganic Chemistry and Applications, Vol. 2012, 2012, Article ID: 730693. doi:10.1155/2012/730693
[13] Y.-T. Sul, C. B. Johansson, S. Petronis, A. Krozer, Y. S. Jeong, A. Wennerberg and T. Albreksson, “Characteristics of the Surface Oxides on Turned and Electrochemically Oxidized Pure Titanium Implants Up to Dielectric Breakdown: The Oxide Thickness, Micropore Configurations, Surface Roughness, Crystal Structure and Chemical Composition,” Biomaterials, Vol. 23, No. 2, 2002, pp. 491-501. doi:10.1016/S0142-9612(01)00131-4
[14] D. Yamamoto, T. Iida, K. Arii, K. Kuroda, R. Ichino, M. Okido and A. Seki, “Surface Hydrophilicity and Osteoconductivity of Anodized Ti in Aqueous Solutions with Various Solute Ions,” Materials Transactions, Vol. 53, No. 11, 2012, pp. 1956-1961. doi:10.2320/matertrans.M2012082
[15] D. Yamamoto, I. Kawai, K. Kuroda, R. Ichino, M. Okido and A. Seki, “Osteoconductivity of Anodized Titanium with Controlled Micron-Level Surface Roughness,” Materials Transactions, Vol. 52, No. 8, 2011, pp. 1650-1654. doi:10.2320/matertrans.M2011049
[16] B. Yang, M. Uchida, H.-M. Kim, X. Zhang and T. Kokubo, “Preparation of Bioactive Titanium Metal via Anodic Oxidation Treatment,” Biomaterials, Vol. 25, No. 6, 2004, pp. 1003-1010. doi:10.1016/S0142-9612(03)00626-4
[17] D. Yamamoto, T. Iida, K. Kuroda, R. Ichino M. Okido and A. Seki, “Formation of Amorphous TiO2 Film on Ti Using Anodizing in Concentrated H3PO4 Aqueous Solution and Its Osteoconductivity,” Materials Transactions, Vol. 53, No. 3, 2012, pp. 508-512. doi:10.2320/matertrans.M2011234
[18] C. Larsson, P. Thomsen, J. Lausmaa, M. Rodahl, B. Kasemo and L. E. Ericson, “Bone Response to Surface Modified Titanium Implants: Studies on Electropolished Implants with Different Oxide Thicknesses and Morphology,” Biomaterials, Vol. 15, No. 13, 1994, pp. 1062-1074. doi:10.1016/0142-9612(94)90092-2
[19] D. Yamamoto, I. Kawai, K. Kuroda, R. Ichino M. Okido and A. Seki, “Osteoconductivity and Hydrophilicity of TiO2 Coatings on Ti Substrates Prepared by Different Oxidizing Processes,” Bioinorganic Chemistry and Applications, Vol. 2012, 2012, Article ID: 495218. doi:10.1155/2012/495218
[20] D. Yamamoto, K. Arii, K. Kuroda, R. Ichino, M. Okido and A. Seki, “Osteoconductivity of Superhydrophilic Anodized TiO2 Coatings on Ti Treated with Hydrothermal Processes,” Journal of Biomaterials and Nanobiotechnology, Vol. 4, No. 1, 2013, pp. 45-52. doi:10.4236/jbnb.2013.41007
[21] C. Y. Kramer, “Extension of Multiple Range Tests to Group Means with Unequal Numbers of Replications,” Biometrics, Vol. 12, No. 3, 1956, pp. 307-310. doi:10.2307/3001469
[22] H. Habazaki, M. Uozumi, H. Konno, K. Shimizu, P. Skeldon and G. E. Thopson, “Crystallization of Anodic Titania on Titanium and Its Alloys,” Corrosion Science, Vol. 45, No. 9, 2003, pp. 2063-2073. doi:10.1016/S0010-938X(03)00040-4
[23] H. Habazaki, T. Ogasawara, H. Konno, K. Shimizu, S. Nagata, P. Skeldon and G. E. Thompson, “Field Crystallization of Anodic Niobia,” Corrosion Science, Vol. 49, No. 2, 2007, pp. 580-593. doi:10.1016/j.corsci.2006.06.005
[24] J. Bico, C. Tordeux and D. Quéré, “Pearl Drops,” Europhysics Letters, Vol. 47, No. 2, 1999, pp. 220-226. doi:10.1209/epl/i1999-00548-y
[25] Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada and T. Hasegawa, “A Transparent Metal: Nb-Doped Anatase TiO2,” Applied Physics Letters, Vol. 86, No. 25, 2005, Article ID: 252101. doi:10.1063/1.1949728
[26] E. Eisenbarth, D. Velten, M. Müller, R. Thull and J. Breme, “Biocompatibility of β-Stabilizing Elements of Titanium Alloys,” Biomaterials, Vol. 25, No. 26, 2004, pp. 5705-5713. doi:10.1016/j.biomaterials.2004.01.021

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.