Removal of Metribuzin by Ozonation: Effect of Initial Concentration and pH

Abstract

Herbicides are chemical compounds capable of killing or inhibiting the growth of certain plants and they have been frequently detected in natural waters. Advanced treatments, including those using ozone, have been used in order to remove herbicides from different types of water with good treatment efficiency. The efficiency of ozonation, an oxidative process, in the removal of persistent compounds is affected by several factors, such as pH and the concentration of the contaminant. The compound metribuzin, the herbicide investigated in this study, is persistent and mobile in the environment with a high potential for transport through soils and thus it can reach the groundwater. In this context, the objective of this study was to evaluate the effect of different pH conditions (2.5, 5.5 and 12.0) and initial concentrations of metribuzin (20, 50 and 100 ppm) on the removal of this herbicide from water using the ozonation process. In order to identify the possible effect of these two variables on the ozonation treatment, the concentration of metribuzin was determined by spectrophotometry UV-vis spectrophotometer. The results were used to evaluate the best conditions for the ozonation treatment. The ozonation conditions which provided the highest metribuzin removal efficiency (86.5% ± 0.3%) were pH 12.0 and an initial metribuzin concentration of 20 ppm. The findings indicate that oxidation with ozone is effective for the removal of metribuzin from aqueous solutions under the conditions studied.

Share and Cite:

M. Honório, E. Junior, R. Moreira, R. Sena and H. José, "Removal of Metribuzin by Ozonation: Effect of Initial Concentration and pH," Journal of Environmental Protection, Vol. 4 No. 6, 2013, pp. 564-569. doi: 10.4236/jep.2013.46065.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. D. Kruze, “Biologia e Controle de Plantas Daninhas— Unidade 4—Herbicidologia,” UFSM, 2012. http://w3.ufsm.br/herb/Unidade%204.pdf
[2] K. V. Plakas and A. J. Karabelas, “Removal of Pesticides from Water by NF and RO Membranes—A Review,” Desalination, Vol. 287, 2012, pp. 255-265. doi:10.1016/j.desal.2011.08.003
[3] IUPAC, “Global Availability of Information on Agrochemicals,” 2011. http://sitem.herts.ac.uk/aeru/iupac/index.htm
[4] P. Chelme-Ayala, M. G. El-Din and D. W. Smith, “Kinetic and Mechanism of Degradation of Two Pesticide in Aqueous Solutions by Ozonation,” Chemosphere, Vol. 78, No. 5, 2010, pp. 557-562. doi:10.1016/j.chemosphere.2009.11.014
[5] WHO, “The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009”. http://www.inchem.org/documents/pds/pdsother/class_2009.pdf
[6] L. Maraschin, “Avaliacao do Grau de Contaminacao por Pesticidas na água dos Principais Rios Formadores do Pantanal Mato-Grossense,” Dissertacao (Mestrado em Saúde e Ambiente)—Universidade Federal de Mato Grosso, Cuiabá, 2003.
[7] L. Vargas and E. S. Roman, “Resistência de Plantas Daninhas a Herbicidas: Conceitos, Origem e Evolucao,” 2006.
[8] M. Patterson, “Metribuzin Analysis of Risks to Endangered and Threatened Salmon and Steelhead,” 2004. http://www.epa.gov/espp/litstatus/effects/metribuzin/metribuzin_analysis.pdf
[9] D. B. Luiz, A. K. Genena, E. Virmond, J. H. Jose, R. F. P. M. Moreira, W. Gebhardt and H. Fr. Schroder, “Identification of Degradation of Erythromycin A Arising from Ozone and Advanced Process Treatment,” Water Environment Research, Vol. 82, No. 9, 2010, pp. 797-805. doi:10.2175/106143010X12609736966928
[10] ANVISA—“Portaria No. 10/SNVS de 08 de Marco de 1.985,” DOU 14/03/85.
[11] J. C. Barreiro and M. O. O. Rezende, “Estudo da Degradacao do Herbicida Metribuzin em Solo na Presenca de ácido Húmico Extraído de Vermicomposto,” IV Encontro Brasileiro de Substancias Húmicas, Vol. 1, 2001, pp. 160-161.
[12] Minnesota Department Health, “Metribuzin Degradates (DA, DK, DADK). Drinking Water Contaminants of Emerging Concern Program,” Junho, 2010. http://www.health.state.mn.us/divs/eh/risk/guidance/dwec/summetribuzin.pdf
[13] R. F. Sena, J. L. Tambosi, A. K. Genena, R. F. P. M. Moreira, H. F. R. Schroder and H. J. Jose, “Treatment of Meat Industry Wastewater Using Dissolved Air Flotation and Advanced Oxidation Processes Monitored by GC-MS and LC-MS,” Chemical Engineering Journal, Vol. 152, No. 1, 2009, pp. 151-157. doi:10.1016/j.cej.2009.04.021
[14] L. C. M. Filho, “Avaliacao da Ozonizacao Como pré ou pós-Tratamento à Filtracao Direta Descendente na Remocao de Cianobactérias e Saxitoxinas,” Tese (Doutorado em Engenharia Ambiental), Universidade Federal de Santa Catarina—Florianópolis, 2006.
[15] F. J. Beltrán, “Ozone Reaction Kinetic for Water and Wastewater Systems,” Lewis Publishers, CRC Press, USA, 2004, 358 p.
[16] C. Gottschank, J. A. Libra and A. Saupe, “Ozonation of Water and Wastewater: A Practical Guide to Understanding Ozone and Its Application,” Willey-VCH, 2000.
[17] C. P. A. B. Teixeira and W. F. Jardim, “Processos Oxidativos Avancados Conceitos Teóricos,” Caderno Temático, Universidade Estadual de Campinas—UNICAMP, Campinas. 2004. http://lqa.iqm.unicamp.br/cadernos/caderno3.pdf
[18] E. Almeida, M. R. Assalin, M. A. Rosa and N. Duran, “Tratamento de Efluentes Industriais por Processos Oxidativos na Presenca de Ozonio,” Química Nova, Vol. 27, No. 5, 2004. doi:10.1590/S0100-40422004000500023
[19] K. Li, A. Yediler, M. Yang, S. Schulte-Hostede and M. H. Wong, “Ozonation of Oxytetracycline and Toxicological Assessment of Its Oxidation By-Products,” Chemosphere, Vol. 72, No. 3, 2008, pp. 473-478. doi:10.1016/j.chemosphere.2008.02.008
[20] M. R. Assalin, P. L. Silva and N. Durán, “Comparacao da Eficiência do Processo de Ozonizacao e Ozonizacao Catalítica (Mn II e Cu II) na Degradacao de Fenol,” 2006.
[21] D. A. Coelho, “Degradacao dos Antiinflamatórios Diclofenaco, Ibuprofeno e Naproxeno por Ozonizacao,” Tese (Doutorando em Engenharia Química), Universidade Federal do Rio de Janeiro—Rio de Janeiro, 2008.
[22] L. M. Silva, M. H. P. Santana and J. F. C. Boodts, “Electrochemistry and Green Chemical Processes: Electrochemical Ozone Production,” Química Nova, Vol. 26, No. 6, 2003, pp. 880-888. doi:10.1590/S0100-40422003000600017

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.