Removal of Lead Ions from Wastewater Using Functionalized Multiwalled Carbon Nanotubes with Tris(2-Aminoethyl)Amine

Abstract

Recently, many attempts have been made to use carbon nanotubes in analytical chemistry, especially in adsorption of heavy metal ions from water. In this study, multiwalled carbon nanotubes (MWCNTs) were functionalized with tris(2-aminoethyl) amine. The functionalized nanoparticles were characterized using Fourier transform infrared (FTIR), thermal gravimetric analyzer (TGA), elemental analysis, and Raman spectroscopy. The results revealed that the functionalization reaction was successfully accomplished. Lead adsorption from water was carried out using functionalized MWCNTs and measured by flame atomic absorption spectrometry (FAAS). The effects of pH, shaking time, initial metal ion concentration, and adsorbent dosage on the adsorption process were studied via batch method. The results obtained showed that removal of lead ions strongly depended on the pH. Desorption study revealed that lead ions adsorbed on the functionalized MWCNTs could be desorbed at pH < 3 due to breakage of complexes formed on the sorbent surface. Maximum adsorption capacity of the sorbent under the optimal conditions was 43 mg/g. This favorable adsorption capacity suggests that functionalized carbon nanotubes can be applied for removal of lead from water solutions. The data obtained were fitted with the Langmuir and Freundlich isotherm adsorption models and Langmuir model showed better agreement with the experimental data.

Share and Cite:

M. Tehrani, P. Azar, P. Namin and S. Dehaghi, "Removal of Lead Ions from Wastewater Using Functionalized Multiwalled Carbon Nanotubes with Tris(2-Aminoethyl)Amine," Journal of Environmental Protection, Vol. 4 No. 6, 2013, pp. 529-536. doi: 10.4236/jep.2013.46062.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. T. Thostenson, Z. Ren and T.-W. Chou, “Advances in the Science Technology of Carbon Nanotubes and Their Composites: A Review,” Composites Science and Technology, Vol. 61, No. 13, 2001, pp. 1899-1912. doi:10.1016/S0266-3538(01)00094-X
[2] F. Augusto, E. Carasek and R. Gomes, “New Sorbents for Extraction and Microextraction Techniques,” Journal of Chromatography A, Vol. 1217, No. 16, 2010, pp. 2533-2542. doi:10.1016/j.chroma.2009.12.033
[3] K. Balasubramanian and M. Burghard, “Electrochemically Functionalized Carbon Nanotubes for Device Applications,” Journal of Materials Chemistry, Vol. 18, No. 26, 2008, pp. 3071-3083. doi:10.1039/b718262g
[4] X. Ren, C. Chen, M. Nagatsu and X. Wang, “Carbon Nanotubes in Environmental Pollution Management, A Review,” Chemical Engineering Journal, Vol. 170, No. 2-3, 2011, pp. 395-410. doi:10.1016/j.cej.2010.08.045
[5] S. Z. Mohammadi, D. Afzali and D. Pourtalebi, “Flame Atomic Absorption Spectrometric Determination of Trace Amounts of Lead, Cadmium and Nickel in Different Matrixes after Solid Phase Extraction on Modified Multiwalled Carbon Nanotubes,” Journal of Chemistry, Vol. 893, 2010, pp. 662-668.
[6] A. Speltini, D. Merli and A. Profumo, “Carbon Nanotubes: Purification, Functionalization and Analytical Application as Stationary Phases for Choromatografic Separation,” Scientifica Acta, Vol. 5, No. 1, 2011, pp. 3-11.
[7] H. Amjad El-Sheikh and J. A. Sweileh, “Recent Application of Nanotubes in Solid Phase Extraction and Preconcentration: A Review,” Jordan Journal of Chemistry, Vol. 6, No. 1, 2011, pp. 1-16.
[8] K. Pyrzynska, “Application of Carbon Sorbents for the Concentration and Separation of Metal Ions,” Analytical sciences, Vol. 23, 2007, pp. 631-637. doi:10.2116/analsci.23.631
[9] X. Liu, Y. Ji, Y. Zhang, H. Zhang and M. Liu, “ Oxidized Multiwalled Carbon Nanotubes as a Novel Solid—Phase Micro Extraction Fiber for Determination of Phenols in Aqueous Samples,” Journal of chromatography A, Vol. 1165, No. 1-2, 2007, pp. 10-17. doi:10.1016/j.chroma.2007.07.057
[10] H. Katsomata, T. Matsomot, S. Kaneko, T. Susuki and K. Ohata, “Preconcentration of Diazinon Using Multiwalled Carbon Nanotubes as Solid Phase Extraction Adsorbents,” Microchemical Journal, Vol. 88, No. 1, 2008, pp. 82-86. doi:10.1016/j.microc.2007.10.002
[11] J. Deng, Y. Shao, N. Gao, Y. Deng, C. Tan, S. Zhou and X. Hu, “Multiwalled Carbon Nanotubes as Adsorbents for Removal of Herbicide Diuron from Aqueous Solution,” Chemical Engineering Journal, Vol. 193, 2012, pp. 339-347.
[12] Y. Al-Degs, M. A. Al-Ghouti and A. H, El-Sheikh, “Simultaneous Determination of Pesticides at Trace Levels in Water Using Multiwalled Carbon Nanotubes as Solidphase Extractant and Multivariate Calibration,” Journal of Hazardous Materials, Vol. 169, No. 1-3, 2009, pp. 128-135. doi:10.1016/j.jhazmat.2009.03.065
[13] L. M. Ravelo-Perez, J. Hernández-Borges and M. A. Rodríguez-Deigado, “Multi-Walled Carbon Nanotubes as Efficient Solid—Phase Extraction Materials of Organophosphorus Pesticides from Apple, Grape, Orange and Pineapple Fruit Juices,” Journal of Chromatography A, Vol. 1211, No. 1-2, 2008, pp. 33-42. doi:10.1016/j.chroma.2008.09.084
[14] S. Ghaseminezhad, D. Afzali and M. A. Taher, “Flame Atomic Adsorption Spectrometry for the Determination of Trace Amount of Rhodium after Separation and Preconcentration onto Modified Multiwalled Carbon Nanotubes as a New Solid Sorbent,” Talanta, Vol. 80, No. 1, 2009, pp. 168-172. doi:10.1016/j.talanta.2009.06.049
[15] A. H. El-Sheikh, J. A. Sweileh and Y. S. Al-Degs, “Effect of Dimentions of Multi-Walled Carbon Nanotubes on Its Enrichment Efficiency of Metal Ions from Environmental Waters,” Analytica Chimica Acta, Vol. 604, No. 2, 2007 pp. 119-126. doi:10.1016/j.aca.2007.10.009
[16] K. Pill, E. M. Cukrowska and N. J. Coville, “Multi-Walled Carbon Nanotubes as Adsorbents for the Removal of Parts per Billion Levels of Hexavalent Chromium from Aqueous Solution,” Journal of Hazardous Materials, Vol. 166, No. 2-3, 2009, pp. 1067-1075. doi:10.1016/j.jhazmat.2008.12.011
[17] Y.-J. Xu, R. Arrigo, X. Liu and D.-S. Su, “Characterization and Use of Functionalized Carbon Nanotubes for the Adsorption of Heavy Metal Anions,” New Carbon Materials, Vol. 26, No. 1, 2011, pp. 57-62.
[18] S. Yang, J. Li, D. Shao, J. Hu and X. Wang, “Adsorption of Ni(II) on Multi-Walled Carbon Nanotubes: Effect of Contact Time, pH, Foreign Ions and PAA,” Journal of Hazardous Materials, Vol. 166, No. 1, 2009, pp. 109-116. doi:10.1016/j.jhazmat.2008.11.003
[19] D. Xu, X. Tan, C. Chen and X. Wang, “Removal of Pb (II) from Aqueous Solution by Oxidized Multiwalled Carbon Nanotubes,” Journal of Hazardous Materials, Vol. 154, No. 1-3, 2008, pp. 407-416. doi:10.1016/j.jhazmat.2007.10.059
[20] R. Li, X. Chang, Z. Li, Z. Zang, Z. Hu, D. Li and Z. Tu, “Multiwalled Carbon Nanotubes Modified with 2-Aminobenzothiazole Modified for Uniquely Selective Solid-Phase Extraction and Determination of Pb(II) Ion in Water Samples,” Microchimica Acta, Vol. 172, No. 3-4, 2011, pp. 269-276. doi:10.1007/s00604-010-0488-9
[21] A. Stafiej and K. Pyrzynska, “Solid Phase Extraction of Metal Ions Using Carbon Nanotubes,” Microchemical Journal, Vol. 89, No. 1, 2008, pp. 29-33. doi:10.1016/j.microc.2007.11.001
[22] N. G. Sahoo, S. Rana, J. W. Cho, L. Li and S. H. Chan, “Polymer Nanocomposites Based on Functionalized Carbon Nanotubes,” progress in Polymer Science, Vol. 35, No. 7, 2010, pp. 837-867.
[23] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios and D. Tasis, “Chemical Oxidation of Multiwalled Carbon Nanotubes,” Carbon, Vol. 46, No. 6, 2008, pp. 833-840. doi:10.1016/j.carbon.2008.02.012
[24] Z. Wang, M. D. Shirley, S. T. Meikle and R. L. D. Whitby, “The Surface Acidity of Acid Oxidized Multiwalled Carbon Nanotubes and the Influence of in-Situ Generated Fulvic Acids on Their Stability in Aqueous Dispersions,” Carbon, Vol. 47, No. 1, 2009, pp. 73-79. doi:10.1016/j.carbon.2008.09.038
[25] J. L. Vicente, A. Albesa, J. L. Lianos, E. S. Flores and A. E. Fertitta, “Effect of Acid Oxidation Treatment on Adsorption Properties of Arc-Discharge Synthesized Multiwall Carbon Nanotubes,” Journal of the Argentine Chemical Society, Vol. 98, 2011, pp.29-38.
[26] D. Afzali and A. Mostafafavi, “Potential of Modified Multiwalled Carbon Nanotubes with 1-(2-Pyridylazo)-2-naphtol as a New Solid Sorbent for the Preconcentration of Trace Amounts of Cobalt(II) Ion,” Analytical Sciences, Vol. 24, No. 9, 2008, pp. 1135-1139. doi:10.2116/analsci.24.1135
[27] H. Tavallali, D. Abdardideh, M. Aalaei and S. Zahmatkesh, “New Application of Chemically Modified Multiwalled Carbon Nanotubes with Thiosemicarbazide as a Sorbent for Separation and Preconcentration of Trace Amounts of Co(II), Cu(II),and Zn(II) in Environmental and Biological Samples Prior to Determination by Flame Atomic Absorption Spectrometry,” Journal of the Chinese Chemical Society, Vol. 58, No. 6, 2011, pp. 1-7.
[28] Y. Cui, Z.-J. Hu, J. X. Yang and H. W. Gao, “Novel Phenyl-Iminodiacetic Acid Grafted Multiwalled Carbon Nanotubes for Solid Phase Extraction of Iron, Copper and Lead Ions from Aqueous Medium,” Microchimica Acta, Vol. 176, No. 5, 2012, 359-367. doi:10.1007/s00604-011-0725-x
[29] G. D. Vukovic and A. D. Marinkovic, “Removal of Cadmium from Aqeous Solutions by Oxidized and Ethylenediamine-Functionalized Multi-Walled Carbon Nanotubes,” Chemical Engineering Journal, Vol. 15, 2011, pp. 238-248.
[30] G. D. Vukovic, A. D. Marinkovic and S. D. Skapin, “Removal of Pb(II) from Aqueous Solution by Amino Multiwalled Carbon Nanotubes,” Chemical Engineering Journal, Vol. 173, No. 3, 2011, pp. 855-865. doi:10.1016/j.cej.2011.08.036
[31] M. R. Nabid, R. Sedghi and A. Bagheri, “Preparation and Application of Poly(2-amino thiophenol )/MWCNTs Nanocamposite for Adsorption and Separation of Cadmium and Lead Ions via Solid Phase Extraction,” Journal of Hazardous Materials, Vol. 203-204, 2012, pp. 93-100. doi:10.1016/j.jhazmat.2011.11.096
[32] Y. Cui, S. Liu, Z.-J. Hu and X.-H. Liu, “Solid-Phase Extraction of Lead(‖) Ions Using Multiwalled Carbon Nanotubes Grafted with Tris (2-Aminoethyl)Amine,” Microchimica Acta, Vol. 174, No. 1-2, 2011, pp. 107-113. doi:10.1007/s00604-011-0601-8
[33] A. Afkhami, M. Saber-Tehrani and H. Bagheri, “Simultaneous Removal of Heavy-Metal Ions in Wastewater Samples Using Nanoalumina Modified with 2,4-Dinitrophenylhydrazine,” Journal of Hazardous Materials, Vol. 181, No. 1-3, 2010, pp. 836-844. doi:10.1016/j.jhazmat.2010.05.089
[34] I. D. Rosca, F. Watari, M. Uo and T. Akasaka, “Oxidation of Multiwalled Carbon Nanotubes by Nitric Acid,” Carbon, Vol. 43, No. 15, 2005, pp. 3124-3131. doi:10.1016/j.carbon.2005.06.019
[35] C. Lu and H. Chiu, “Adsorption of Zinc(II) from Water with Purified Carbon Nanotubes,” Chemical Engineering Science, Vol. 61, No. 4, 2006, pp. 1138-1145.
[36] K. Pyrzynska, “Carbon Nanostructures for Separation, Preconcentration and Speciation of Metal Ions,” Trends in Analytical Chemistry, Vol. 29, No. 7, 2010, pp. 718-727. doi:10.1016/j.trac.2010.03.013
[37] A. Afkhami, M. Saber-Tehrani and H. Bagheri, “Flame Atomic Absorption Spectrometric Determination of Trace Amounts of pb(II) and Cr(III) in Biological, Food and Environmental Samples after Preconcentration by Modified Nano-Alumina,” Microchimica Acta, Vol. 172, No. 1-2, 2011, pp. 125-136. doi:10.1007/s00604-010-0478-y
[38] C.-H. Weng, “Modeling Pb(II) Adsorption onto Sandy Loam Soil,” Journal of Collid and Interface Science, Vol. 272, No. 2, 2004, pp. 262-270.
[39] C.-H. Wu, “Studies of the Equilibrium and Thermodynamics of the Adsorption of Cu2+ onto As-Produced and Modified Carbon Nanotubes,” Journal of Colloid and Interface Science, Vol. 311, No. 2, 2007, pp. 338-346. doi:10.1016/j.jcis.2007.02.077
[40] N. A. Kabbashi, M. A. Atieh and A. Al-Mamun, “Kinetic Adsorption of Application of Carbon Nanotubes for pb(II) Removal from Aqueous Solution,” Journal of Environmental Sciences, Vol. 21, No. 4, 2009, pp. 539-544.
[41] C. Chen and X. Wang, “Adsorption of Ni(II) from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes,” Industrial & Engineering Chemistry Research, Vol. 45, No. 26, 2006, pp. 9144-9149. doi:10.1021/ie060791z
[42] S. A. Dastgheib and D. A. Rocktraw, “A Model for the Adsorption of Single Metal Ion Solutes in Aqueous Solution onto Activated Carbon Produced from Pecan Shells,” Carbon, Vol. 40, No. 11, 2002, pp. 1843-1851. doi:10.1016/S0008-6223(02)00037-4
[43] A. Islam, M. A. Laskar and A. Ahmad, “Characterization of a Novel Chelating Resin of Enhanced Hydrophilicity and Its Analytical Utility for Preconcentration of Trace Metal Ions,” Talanta, Vol. 81, No. 4, 2010, pp. 1772-1780. doi:10.1016/j.talanta.2010.03.035
[44] M. Imamoglu and O. Tekir, “Removal of Copper(II) and Lead(II) Ions from Aqueous Solutions by Adsorption on Activated Carbon from a New Precursor Hazelnut Husks,” Desalination, Vol. 228, No. 1-3, 2008, pp. 108-113. doi:10.1016/j.desal.2007.08.011
[45] F. Xie, X. Lin, X. Wu and Z. Xie, “Solid Phase Extraction of Lead(II), Copper(II), Cadmium(II) and Nickel(II) Using Gallic Acid Modified Silica Gel Prior to Determination by Flame Atomic Absorption Spectrometry,” Talanta, Vol. 74, No. 4, pp. 836-843. doi:10.1016/j.talanta.2007.07.018
[46] Y. Cui, X. Chang, Y. Zhai and H. Zhu, “ICP-AES Determination of Trace Elements after Preconcentrated with p-Dimethylaminobenaldehyde-Modified Nanometer SiO2 from Sample Solution,” Microchemical Journal, Vol. 83, No. 1, 2006, pp. 35-41. doi:10.1016/j.microc.2006.01.020

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.