Share This Article:

An Approach for Micropropagation of Blueberry (Vaccinium corymbosum L.) Plants Mediated by Temporary Immersion Bioreactors (TIBs)

Full-Text HTML Download Download as PDF (Size:452KB) PP. 1022-1028
DOI: 10.4236/ajps.2013.45126    5,078 Downloads   7,496 Views   Citations


A new procedure for blueberry (Vaccinium corymbosum L.) micropropagation in programmed Temporary Immersion Bioreactors (TIBs based on two separate bottles) was developed for the commercial genotypes Biloxi, Sharp Blue and Brillita. Plant cultures were developed in a controlled environment with 0.4 MPa CO2 enrichment, sucrose-reduced medium, and light intensity of 60 mM m-2·s-1. Principal component analysis showed that component 1 (C1) grouped 64.08% of the total variability, while the first two components accounted for 86.97%. Representation of the principal components demonstrated three clusters corresponding with the blueberry genotypes, and within each cluster plants micropropagated in agar-base medium grouped separately from those plants multiplied in TIBs. Both plant number and total internodes traits (related to the productive efficiency) were demonstrated superior in blueberries propagated in TIBs. Additionally, when transferred to greenhouse conditions, blueberries propagated in TIBs showed higher adaptability and growing rates than those cultured by the conventional approach, altogether evidencing the occurrence of a photomixotrophic stage in the vitroplantlets cultured in TIBs.

Cite this paper

A. Arencibia, C. Vergara, K. Quiroz, B. Carrasco, C. Bravo and R. Garcia-Gonzales, "An Approach for Micropropagation of Blueberry (Vaccinium corymbosum L.) Plants Mediated by Temporary Immersion Bioreactors (TIBs)," American Journal of Plant Sciences, Vol. 4 No. 5, 2013, pp. 1022-1028. doi: 10.4236/ajps.2013.45126.


[1] S. P. Vander Kloet, “The Genus Vaccinium in North America,” Agriculture and Agri-Food Canada, Ottawa, 1988, p. 1828.
[2] ASOEX, “Chilean Exporters Association,” 2011.
[3] W. Kalt, C. F. Forney, A. Martin and R. L. Prior, “Antioxidant Capacity, Vitamin C, Phenolics, and Anthocyanins after Fresh Storage of Small Fruits,” Journal of Agricultural and Food Chemistry, Vol. 47, No. 11, 1999, pp. 4638-4644. doi:10.1021/jf990266t
[4] A. Cristoni and M. J. Magistretti, “Antiulcer and Healing Activities of Vaccinium mytrillus Anthiocyanosides,” Farmaco Prat, Vol. 42, No. 2, 1987, pp. 29-43.
[5] H. Kamei, T. Kojima, M. Hasegawa, T. Koide, T. Umeda, T. Yukawa and K. Terabe, “Suppression of Tumor Cell Growth by Anthocyanins in Vitro,” Cancer Investigation, Vol. 13, No. 6, 1995, pp. 590-594. doi:10.3109/07357909509024927
[6] A. R. Jamieson and N. L. Nickerson, “Field Performance of the Lowbush Blueberry Propagated by Seed, Stem Cuttings and Micropropagation,” Acta Horticulturae, Vol. 626, 26th International Horticultural Congress on Berry Crop Breeding, Production and Utilization for a New Century, 2003, pp. 423-428.
[7] G. J. Galletta and J. R. Ballington, “Blueberries, Cranberries, and Lingonberries,” In: J. Janick and J. N. Moore, Eds., Fruit Breeding, Vol. 2, Vine and Small Fruit Crops, John Wiley & Sons, Inc., New York, 1996, pp. 1-107.
[8] Nickerson NL (1978) In vitro shoot formation in lowbush blueberry seedling explants. Hort-Science 13: 698.
[9] J. J. Frett and J. M. Smagula, “In Vitro Shoot Production of Lowbush Blueberry,” Canadian Journal of Plant Science, Vol. 63, No. 2, 1983, pp. 467-472. doi:10.4141/cjps83-054
[10] L. Brissette, L. Tremblay and D. Lord, “Micropropagation of Lowbush Blueberry from Mature Field-Grown Plants,” HortScience, Vol. 25, No. 3, 1990, pp. 349-351.
[11] Debnath SC (2004) In vitro culture of lowbush blueberry (Vaccinium angustifolium Ait.). Small Fruits Rev. 3: 393- 408. doi:10.1300/J301v03n03_16
[12] J. C. Lorenzo, B. L. Gonzalez, M. Escalona, C. Teisson, P. Espinosa and C. Borroto, “Sugarcane Shoots Formation in an Improved Temporary Immersion System,” Plant Cell, Tissue and Organ Culture, Vol. 54, No. 3, 1998, pp. 197-200. doi:10.1023/A:1006168700556
[13] M. Escalona, G. Samson, C. Borroto and Y. Desjardins “Physiology of Effects of Temporary Immersion Bioreactors on Micropropagated Pineapple Plantlets,” In Vitro Cellular and Developmental Biology Plant, Vol. 39, No. 6, 2003, pp. 651-656. doi:10.1079/IVP2003473
[14] Y. Ibaraki and K. Kurata, “Automation of Somatic Embryo Production,” Plant Cell Tissue and Organ Culture, Vol. 65, No. 3, 2001, pp. 179-199. doi:10.1023/A:1010636525315
[15] K. Y. Paek, D. Chakrabarty and E. J. Hahn, “Application of Bioreactor Systems for Large Scale Production of Horticultural and Medicinal Plants,” Plant Cell Tissue and Organ Culture, Vol. 81, 2005, pp. 287-300. doi:10.1007/s11240-004-6648-z
[16] X. C. Piao, D. Chakrabarty, E. J. Hahn and K. Y. Paek, “A Simple Method for Mass Production of Potato Microtubers Using a Bioreactor System,” Current Science, Vol. 84, No. 8, 2003, pp. 1129-1132.
[17] D. Chakrabarty, E. J. Hahn, Y. S. Yoon and K. Y. Paek, “Micropropagation of Apple Root Stock ‘M9 EMLA’ Using Bioreactor,” The Journal of Horticultural Science and Biotechnology, Vol. 78, No. 5, 2003, pp. 605-609.
[18] S. C. Debnath, “A Scale-Up System for Lowbush Blueberry Micropropagation Using a Bioreactor,” HortScience, Vol. 44, No. 7, 2009), pp. 1962-1966.
[19] A. D. Arencibia, A. Bernal, L. Yang, L. Cortegaza, E. R. Carmona, A. Pérez, C. J. Hu, Y. R. Li, C. M. Zayas and I. Santana, “New Role of Phenylpropanoid Compounds during Sugarcane Micropropagation in Temporary Immersion Bioreactors (TIBs),” Plant Sciences, Vol. 175, No. 4, 2008, pp. 487-496. doi:10.1016/j.plantsci.2008.05.024
[20] A. Bernal, P. Machado, E. R. Carmona, O. Rivero, L. Cortegaza, M. Cabrera, C. M. Zayas, O. Nodarse, I. Santana and A. D. Arencibia, “Priming and Biopriming Integrated into the Sugarcane Micropropagation Technology by Temporary Immersion Bioreactors (TIBs),” Sugar Technology, Vol. 10, No. 1, 2008, pp. 42-47.
[21] Y. Liu, Y. Zambrano, C. J. Hu, E. R. Carmona, A. Bernal, A. Pérez, Y. R. Li, A. Guerra, I. Santana and A. D. Arencibia, “Sugarcane Metabolites Produced in CO2-Rich Temporary Immersion Bioreactors (TIBs) Induce Tomato (Solanum lycopersicum) Resistance against Bacterial Wilt (Ralstonia solanacearum),” In Vitro Cell Development Plant, Vol. 46, No. 6, 2010, pp. 558- 568.
[22] J. P. Majada, M. A. Fal, F. Tadeo and R. Sánchez, “Effects of Natural Ventilation on Leaf Ultrastructure of Dianthus caryophyllus L. Cultures in Vitro,” In Vitro Cellular & Developmental Biology: Plant, Vol. 38, No. 3, 2002, pp. 272-278. doi:10.1079/IVP2001271
[23] T. Kozai, C. Kubota and B. R. Jeong, “Environmental Control for the Large-Scale Production of Plants through in Vitro Techniques,” Plant Cell, Tissue and Organ Culture, Vol. 51, No. 1, 1997, pp. 49-56. doi:10.1023/A:1005809518371
[24] G. Lloyd and B. McCown, “Commercially-Feasible Micropropagation of Mountain Laurel, Kalmia latifolia, by Use of Shoot-Tip Culture,” Proceedings of the International Plant Propagators Society, Vol. 30, 1981, pp. 421-427.
[25] J. C. Lorenzo, M. A. Blanco, O. Pelaez, A. Gonzalez, M. Cid, A. Iglesias, B. Gonzalez, M. Escalona, P. Espinosa and C. Borroto, “Sugarcane Micropropagation and Phenolic Excretion,” Plant Cell, Tissue and Organ Culture, Vol. 65, No. 1, 2001, pp. 1-8. doi:10.1023/A:1010666115337
[26] L. Yabor, P. Espinosa, J. C. Lorenzo and A. D. Arencibia, “Pineapple (Ananas comosus L. Merr.),” Methods in Molecular Biology, Vol. 344: 2007, pp. 219-226.
[27] N. Niemenak, K. S. Surminski, C. Rohsius, D. O. Ndoumou and R. Lieberei, “Regeneration of Somatic Embryos in Theobroma cacao L. in Temporary Immersion Bioreactor and Analyses of Free Amino Acids in Different Tissues,” Plant Cell Reports, Vol. 27, No. 4, 2008, pp. 667-676. doi:10.1007/s00299-007-0497-2
[28] P. H. A. Sneath and R. R. Sokal, “Numerical Taxonomy: The Principles and Practice of Numerical Classification,” San Francisco, 1973.
[29] J. Janick and M. Ziv, “Bioreactor Technology for Plant Micropropagation,” Horticulture Review, Vol. 24, John Wiley & Sons, Inc, New York, 2000, pp. 1- 30.
[30] H. Etienne and M. Berthouly, “Temporary Immersion Systems in Plant Micropropagation,” Plant Cell, Tissue Organ Cultures, Vol. 69, No. 3, 2002, pp. 215-31. doi:10.1023/A:1015668610465
[31] C. Teisson and D. Alvard, “A New Concept of Plant in Vitro Cultivation Liquid Medium: Temporary Immersion,” In: M.Terzi, R. Cella and A. Falavigna, Eds., Current Plant Science and Biotechnology in Agriculture. Vol. 22. Kluwer Academic Publication, Dordrecht, 1995, pp. 105- 110.
[32] U. Conrath, G. J. M. Beckers, V. Flors, P. García-Agustín, G. Jakab and F. Mauch, “Priming: Getting Ready for Battle,” Molecular Plant-Microbe Interactions, Vol. 19, No. 10, 2006, pp. 1062-1071. doi:10.1094/MPMI-19-1062
[33] T. J. Bruce, M. C. Matthes, J. A. Napier and J. Pickett, “Stressful ‘Memories’ of Plants: Evidence and Possible Mechanisms,” Plant Science, Vol. 173, No. 6, 2007, pp. 603-608. doi:10.1016/j.plantsci.2007.09.002
[34] T. Kozai, R. Jeong, C. Kubota and Y. Murai, “Effects of Volume and Initial Strength of Medium on the Growth, Photosynthesis and Ion Uptake of Potato (Solanum tuberosum L.) Plantlet in Vitro,” Journal of the Japanese Society for Horticultural Science, Vol. 64, No. 1, 1995, pp. 63-71. doi:10.2503/jjshs.64.63
[35] M. Mingozzi, S. Morini, M. Lucchesini and A. Mensuali, “Effects of Leaf Soluble Sugars Content and Net Pho-Tosynthetic Rate of Quince Donor Shoots on Subsequent Morphogenesis in Leaf Explants,” Biologia Plantarum, Vol. 55, No. 2, 2011, pp. 237-242. doi:10.1007/s10535-011-0034-6
[36] S. Morini and A. Melai, “CO2 Dynamics and Growth in Photoautotrophic and Photomixotrophic Apple Cultures,” Biologia Plantarum, Vol. 47, No. 2, 2004, pp. 167-172. doi:10.1023/B:BIOP.0000022246.09161.63

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.