Paleoclimate reconstruction during MIS5a based on a speleothem from Nerja Cave, Málaga, South Spain

Abstract

Speleothems from Nerja Cave in southern Spain provide a record during interglacial period MIS5a. Period of speleothem deposition occurred from 70,000 90,000 yr ago. Oxygen (δ18O) and hydrogen (δD) isotope ratios of speleothem and fluid inclusions enable the reconstruction of climatic variability in this region of southern Spain. Fluid inclusions trapped in speleothems represent samples of drip water from which the speleothems grew. The isotopic compositions of cave dripwaters approximate average annual δ18O and δD of precipitation, therefore δ18O can be calculated from D/H of inclusion water using the MWL relationship δD = 8δ18O + 10. The measurements of the δD values of fluid-inclusion water and δ18O values from speleothems have been applied to paleoclimate reconstruction in Southern Spain indicating a colder condition than at present.

Share and Cite:

Cisneros, C. and Caballero, E. (2013) Paleoclimate reconstruction during MIS5a based on a speleothem from Nerja Cave, Málaga, South Spain. Natural Science, 5, 533-540. doi: 10.4236/ns.2013.55067.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Rozanski, K., Araguás-Araguás, L. and Gonfiantini R., (1992) Relation between long-term trends of O-18 isotope composition of precipitation and climate. Science, 258, 981-985. doi:10.1126/science.258.5084.981
[2] Fleitmann, D., Burns, S.J., Neff, U., Mangini, A. and Matter A. (2003) Changing moisture sources over the last 330.000 years in northern Oman from fluid-inclusion evidence in speleothems. Quaternary Research, 60, 223-232. doi:10.1016/S0033-5894(03)00086-3
[3] Jiménez de Cisneros, C., Caballero, E., Vera, J.A. and Andreo, B. (2011) An optimized thermal extraction system for preparation of water from fluid inclusions in speleothems. Geologica Acta, 9, 149-158.
[4] Sanz de Galdeano, C. (1990) Estructura y estratigrafía de la Sierra de los Guájares y sectores próximos (conjunto Alpujárride, Cordilleras Béticas). Estudios Geológicos, 46, 123-134. doi:10.3989/egeol.90461-2444
[5] Andreo, B., Carrasco, F. and Sanz de Galdeano, C. (1993) Estudio geológico del entorno de la Cueva de Nerja. In: Carrasco, F., Ed., Trabajos Sobre la Cueva de Nerja, Málaga, 3, 25-50.
[6] Caballero, E., Jiménez de Cisneros, C. and Reyes, E. (1996) A stable isotope study of cave seepage waters. Applied Geochemistry, 11, 583-587. doi:10.1016/0883-2927(96)00026-1
[7] Frisia, S., Borsato, A., Fairchild, I. and McDermott, F. (2000) Calcite fabrics, growth mechanismsand environments of formation in speleothems from the Italian Alps and Southwestern Ireland. Journal of Sedimentary Research, 70, 11831196. doi:10.1306/022900701183
[8] Durán, J.J. (1996) Los sistemas kársticos de la provincia de Málaga y su evolución: Contribución al conocimiento paleoclimático del Cuaternario en el Mediterráneo occidental. Ph.D. Thesis, University of Madrid, Madrid.
[9] Durán, J.J., Grün, R. and Ford, D.C. (1993) Dataciones geocronológicas absolutas (Métodos E.S.R. y Series de Uranio) en la Cueva de Nerja y su entorno. Implicaciones evolutivas, paleoclimáticas y neosintectónicas. In: Carrasco, F., Ed., Trabajos Sobre la Cueva de Nerja. Málaga, 3, 233-248.
[10] McCrea, J.M. (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics, 18, 849-857. doi:10.1063/1.1747785
[11] Morrison, J., Brockwell, T., Merren, T., Fourel, F. and Phillips, A.M. (2001) On-line high-precision stable hydrogen isotopic analyses on nanoliter water samples. Analytical Chemistry, 73, 3570-3575. doi:10.1021/ac001447t
[12] Schwarcz, H.P., Harmon, R.S., Thompson, P. and Ford, D.C. (1976) Stable isotope studies of fluid inclusions in speleothems and their paleoclimatic effect. Geochimica et Cosmochimica Acta, 40, 657-665. doi:10.1016/0016-7037(76)90111-3
[13] Schwarcz, H.P. (1986) Geochronology and isotopic geochemistry of speleothems. In: Fritz, P. and Fontes, Ch. Eds., Handbook of Environmental Isotope Geochemistry, Elsevier, Amsterdam, 271-303.
[14] Hendy, C.H. (1971) The isotopic geochemistry of speleothems. I. The calculation of the effects of differents modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochimica et Cosmochimica Acta, 35, 801-824. doi:10.1016/0016-7037(71)90127-X
[15] Bar-Matthews, M., Ayalon, A., Matthews, A., Halicz, L. and Sass, E. (1993) The Soreq cave speleothems as indicators of paleoclimate variations. Geological Survey of Israelian Current Research, 8, 1-3.
[16] Bar-Matthews, M., Ayalon, A and Kaufman, A. (1997) Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research, 47, 155-168. doi:10.1006/qres.1997.1883
[17] Linge, H., Lauritzen, S.E. and Lundberg, J. (2001) Stable isotope stratigraphy of a late last interglacial speleothem from Rana, Northern Norway. Quaternary Research, 56, 155-166
[18] Linge, H., Lauritzen, S.E., Lundberg, J. and Berstad, J.M. (2001) Stable isotope stratigraphy of Holocene speleothems: Examples from cave system in Rana, northern Norway. Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 209-224. doi:10.1016/S0031-0182(00)00225-X
[19] Fantidis, J. and Ehhalt, D.H. (1970) Variations of the carbon and oxygen composition in stalagmites and stalactites: Evidence of non-equilibrium isotopic fractionation. Earth Planetary Science Letters, 10, 136-144. doi:10.1016/0012-821X(70)90075-0
[20] Grossman, E.T. and Ku, T.L. (1981) Aragonite-water isotopic paleotemperature scale based on the benthic foraminifera Hoeglundia elegans. Abstracts with Programs. Geographical Society of America, Colorado.
[21] Dennis, P.F., Rowe, P.J. and Atkinson, T.C. (2001) The recovery and isotopic measurement of water from fluid inclusions in speleothems. Geochimica et Cosmochimica Acta, 65, 871-884. doi:10.1016/S0016-7037(00)00576-7
[22] McGarry, S., Bar-Matthews, M., Matthews, A., Vaks, A., Schilman, B. and Ayalon, A. (2004) Constraints on hydrological and paleotemperature variations in the Eastern Mediterranean region in the last 140 ka given by the δD values of speleothem fluid inclusions. Quaternary Science Reviews, 23, 919-934. doi:10.1016/j.quascirev.2003.06.020
[23] Serefiddin, F., Schwarcz, H. and Ford, D. (2005) Use of hydrogen isotope variations in speleothem fluid inclusions as an independent measure of paleoclimate. Geological Society of America Special, 395, 43-53.
[24] Vonhof, H.B., van Breukelen, M.R., Postma, O., Rowe, P.J., Atkinson, T.C. and Kroon, D. (2006) A continuousflow crushing device for on-line δ2H analysis of ?uid inclusion water in speleothems. Rapid Communications in Mass Spectrometry, 20, 2553-2558. doi:10.1002/rcm.2618
[25] Verheyden, S., Genty, D., Cattani, O. and van Breukelen, M.R. (2008) Water release patterns of heated speleothem calcite and hydrogen isotope composition of fluid inclusions. Chemical Geology, 247, 266-281. doi:10.1016/j.chemgeo.2007.10.019
[26] Fleitmann, D. and Matter, A. (2009) The speleothem record of climate variability in Southern Arabia. C.R. Geoscience, 341, 633-642. doi:10.1016/j.crte.2009.01.006
[27] Jiménez de Cisneros, C., Caballero, E., Vera, J.A., Durán, J.J. and Juliá, R. (2003) A record of Pleistocene climate from a stalactite, Nerja Cave, southern Spain. Palaeogeo Palaeoclim Palaeoecol, 189, 1-10. doi:10.1016/S0031-0182(02)00589-8
[28] Jiménez de Cisneros, C. and Caballero, E. (2010) δ13C values from a stalagmite at the Nerja Cave, South Spain. In: Andreo, B., Carrasco, F., Durán, J.J. and LaMoreaux, J.W., Eds., Advances in Research in Karts Media, Springer, Berlin, 497-501. doi:10.1007/978-3-642-12486-0_76
[29] Dorale, J.A., González, L.A., Reagan, M.K., Picknett, D.A., Murrell, M.T. and Baker, R.G. (1992) A high-resolution record of holocene climate change in speleothem calcite from Cold Water cave, northeast Iowa. Science, 258, 1626-1630. doi:10.1126/science.258.5088.1626
[30] Dorale, J.A., Edwards, R.L., Ito, E. and González, L.A. (1998) Climate and vegetation history of Midcontinent from 75 to 25 ka: A speleothem record from crevice cave, Missouri, USA. Science, 282, 1871-1871. doi:10.1126/science.282.5395.1871
[31] Jiménez de Cisneros, C. and Caballero, E. (2011) Carbon isotope values as paleoclimatic indicators. Study on stalagmite from Nerja Cave, South Spain. Carbonates Evaporites, 26, 41-46. doi:10.1007/s13146-011-0049-2
[32] Morse, J. and Mackenzie, F. (1990) Geochemistry of sedimentary carbonates. Developments in Sedimentology. Elsevier, Amsterdam.
[33] Frisia, S., Borsato, A., Fairchild, I., McDermott, F. and Selmo, E. (2002) Aragonite-calcite relationships in speleothems (Grotte de Claumose, France): environment, fabrics and carbonate geochemistry. Journal of Sedimentary Research, 72, 687-699. doi:10.1306/020702720687
[34] McMillan, E., Fairchild, I., Frisia, S., Borsato, A. and McDermott, F. (2005) Annual trace element cycles in calcite-aragonite speleothems: Evidence of drought in the western Mediterranean 1200-1100 yr. BP. Journal of Quaternary Science, 20, 423-433. doi:10.1002/jqs.943
[35] Zhang, R., Schwarcz, H., Ford, D., Serefiddin, F. and Beddows, P. (2008) An absolute paleotemperature record from 10 to 6 Ka inferred from fluid inclusion D/H ratios of a stalagmite from Vancouver Island, British Columbia, Canada. Geochimica et Cosmochimica Acta, 72, 10141026. doi:10.1016/j.gca.2007.12.002
[36] Martrat, B., Grimalt, J., Lopez-Martinez, C., Cacho, I., Sierro, F.J., Flores, J.A., Zahn, R., Canals, M., Curtis, J.H. and Hodell, D.A. (2004) Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science, 306, 1762-1765. doi:10.1126/science.1101706
[37] Hodge, E., Richards, D.A., Smart, P.L., Ginés, A. and Mattey, D.P. (2008) Sub-millennial climate shifts in the western Mediterranean during the last glacial period recorded in a speleothem from Mallorca, Spain. Journal of Quaternary Science, 23, 713-718.
[38] Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus, 16, 436-448. doi:10.1111/j.2153-3490.1964.tb00181.x
[39] North Greeland Ice Core Project Members (2004) Highresolution record of Northern hemisphere climate extending into the last interglacial period. Nature, 431, 147-151. doi:10.1038/nature02805

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.