Identification of regulatory sequence signatures in microRNA precursors implicated in neurological disorders

Abstract

MicroRNAs have emerged as one of the major classes of non-coding RNAs. Recent reports have placed them in high abundance in the nervous system, having key roles in development. Neurological disorders such as Parkinson’s disease, Alzheimer’s disease as well as Huntington disease have also been studied and several microRNAs associated with diseases pathogenesis have been identified. Various such findings indicate differential expression levels of many of these microRNAs. Such changes in the expression levels not only indicate towards a control of the biogenesis of these microRNAs but also indicate towards critical yet unelucidated roles of regulatory proteins, which probably act in concert to control the production or maturation of these molecules. In this work, a collection of overrepresented regulatory motif signatures were identified in the DNA and RNA sequences of the precursor microRNAs. The identification of such regulatory sequence signatures promises to provide new insights into many facets of microRNA regulation and neurological disorders.

Share and Cite:

Ganguli, S. , Das, S. , Chakraborty, H. , Gupta, S. and Datta, A. (2013) Identification of regulatory sequence signatures in microRNA precursors implicated in neurological disorders. Advances in Bioscience and Biotechnology, 4, 26-33. doi: 10.4236/abb.2013.45A003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Lee, R.C. and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science, 294, 862-864. doi:10.1126/science.1065329
[2] Hutvagner, G., Simard, M.J., Mello, C.C. and Zamore, P.D. (2004) Sequence-specific inhibition of small RNA function. PloS Biology, 2, E98. doi:10.1371/journal.pbio.0020098
[3] Bak, M., Silahtaroglu, A., Moller, M., Christensen, M., Rath, M.F., Skryabin, B., Tommerup, N. and Kauppinen, S. (2008) MicroRNA expression in the adult mouse central nervous system. RNA, 14, 432-444. doi:10.1261/rna.783108
[4] Christensen, M. and Schratt, G.M. (2009) MicroRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases. Neuroscience Letters, 466, 55-62. doi:10.1016/j.neulet.2009.04.043
[5] Hebert, S.S., Papadopoulou, A.S., Smith, P., Galas, M.C., Planel, E., Silahtaroglu, A.N., Sergeant, N., Buee, L. and De Strooper, B. (2010) Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Human Molecular Genetics, 19, 3959-3969. doi:10.1093/hmg/ddq311
[6] Hebert, S.S., Horre, K., Nicolai, L., Papadopoulou, A.S., Mandemakers, W., Silahtaroglu, A.N., et al. (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimers disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National Academy of Sciences of the United States of America, 105, 64156420. doi:10.1073/pnas.0710263105
[7] Hebert, S.S., Horre, K., Nicolai, L., Bergmans, B., Papadopoulou, A.S., Delacourte, A. and De Strooper, B. (2009) MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiology of Disease, 33, 422-428. doi:10.1016/j.nbd.2008.11.009
[8] Hebert, S.S. and De Strooper, B. (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends in Neurosciences, 32, 199-206. doi:10.1016/j.tins.2008.12.003
[9] Johnson, R., Zuccato, C., Belyaev, N.D., Guest, D.J., Cattaneo, E. and Buckley, N.J. (2008) A microRNAbased gene dysregulation pathway in Huntington’s disease. Neurobiology of Disease, 29, 438-445. doi:10.1016/j.nbd.2007.11.001
[10] Junn, E., Lee, K.W., Jeong, B.S., Chan, T.W., Im, J.Y. and Mouradian, M.M. (2009) Repression of alphasynuclein expression and toxicity by microRNA-7. Proceedings of the National Academy of Sciences of the United States of America, 106, 13052-13057. doi:10.1073/pnas.0906277106
[11] Junn, E., Lee, K.W., Jeong, B.S., Chan, T.W., Im, J.Y. and Mouradian, M.M. (2009) Repression of alphasynuclein expression and toxicity by microRNA-7. Proceedings of the National Academy of Sciences of the United States of America, 106, 13052-13057. doi:10.1073/pnas.0906277106
[12] Kim, J., Inoue, K., Ishii, J., Vanti, W.B., Voronov, S.V., Murchison, E., Hannon, G. and Abeliovich, A. (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317, 1220-1224. doi:10.1126/science.1140481
[13] Kim, J., Inoue, K., Ishii, J., Vanti, W.B., Voronov, S.V., Murchison, E., et al. (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317, 12201224. doi:10.1126/science.1140481
[14] Kosik, K.S. (2006) The neuronal microRNA system. Nature Reviews Neuroscience, 7, 911-920. doi:10.1038/nrn2037
[15] Krichevsky, A.M. (2007) Mi-croRNA profiling: From dark matter to white matter, or identifying new players in neurobiology. Science World Journal, 7, 155-166. doi:10.1100/tsw.2007.201
[16] Lukiw, W.J. (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport, 18, 297-300. doi:10.1097/WNR.0b013e3280148e8b
[17] Lukiw, W.J., Zhao, Y. and Cui, J.G. (2008) An NFkappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. The Journal of Biological Chemistry, 283, 31315-31322. doi:10.1074/jbc.M805371200
[18] Miska, E.A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., Rakic, P., Constantine-Paton, M. and Horvitz, H.R. (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biology, 5, R68. doi:10.1186/gb-2004-5-9-r68
[19] Boissonneault, V., Plante, I., Rivest, S. and Provost, P. (2009) MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor proteinconverting enzyme 1. The Journal of Biological Chemistry, 284, 1971-1981. doi:10.1074/jbc.M807530200
[20] Sethi, P. and Lukiw, W.J. (2009) Micro-RNA abundance and stability in human brain: Specific alterations in Alzheimer’s disease temporal lobe neocortex. Neuroscience Letters, 459, 100-104. doi:10.1016/j.neulet.2009.04.052
[21] Wang, W.X., Rajeev, B.W., Stromberg, A.J., Ren, N., Tang, G., Huang, Q., Rigoutsos, I. and Nelson, P.T. (2008) The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. The Journal of Neuroscience, 28, 1213-1223. doi:10.1523/JNEUROSCI.5065-07.2008
[22] Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E. and Ambros, V. (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5, R13. doi:10.1186/gb-2004-5-3-r13
[23] Smith, B., Treadwell, J., Zhang, D., Ly, D., McKinnell, I., Walker, P.R. and Sikorska, M. (2010) Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment. PLoS One, 5, e11109. doi:10.1371/journal.pone.0011109
[24] Vilardo, E., Barbato, C., Ciotti, M., Cogoni, C. and Ruberti, F. (2010) MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. The Journal of Biological Chemistry, 285, 18344-18351. doi:10.1074/jbc.M110.112664
[25] Wang, G., van der Walt, J.M., Mayhew, G., Li, Y.J., Zuchner, S., Scott, W.K., et al. (2008) Variation in the miRNA433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. The American Journal of Human Genetics, 82, 283-289. doi:10.1016/j.ajhg.2007.09.021
[26] Packer, A.N., Xing, Y, Harper, S.Q., Jones, L., Davidson, B.L. (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. The Journal of Neuroscience, 28, 14341-14346. doi:10.1523/JNEUROSCI.2390-08.2008
[27] Bryne, J.C., Valen, E., Tang, M.H., Marstrand, T., Winther, O., da Piedade, I., Krogh, A., Lenhard, B., Sandelin, A. (2008) JASPAR, the open access database of transcription factor-binding profiles: New content and tools in the 2008 update. Nucleic Acids Research, 36, 102-106.
[28] Sierro, N., Makita, Y., de Hoon, M.J.L. and Nakai, K. (2008) DBTBS: A database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Research, 36, 93-96. doi:10.1093/nar/gkm910
[29] Huang, Y.H., Chien, C.H., Jen, K.H. and Huang H.D. (2006) RegRNA: A regulatory RNA motifs and elements finder. Nucleic Acids Research, 34, 429-434.
[30] Wasserman, W.W. and Sandelin, A. (2004) Applied bioinformatics for the identification of regulatory elements. Nature Reviews Genetics, 5, 276-287.
[31] Sandelin, A. and Wasserman, W.W. (2004) Constrained binding site diversity within families of transcription factors enhances pattern discovery bioinformatics. Journal of Molecular Biology, 338, 7-15. doi:10.1016/j.jmb.2004.02.048
[32] Okumura, T., Makiguchi, H., Makita, Y., Yamashita, R. and Nakai, K. (2007) Melina II: A web tool for comparisons among several predictive algorithms to find potential motifs from promoter regions. Nucleic Acids Research, 35, 227-231.
[33] Okonechnikov, K., Golosova, O. and Fursov, M. (the UGENE team) (2012) Unipro UGENE: A unified bioinformatics toolkit. doi:10.1093/bioinformatics/bts091
[34] Adhikary, M., Ganguli, S., Das, G.S. and Datta, A. (2011) Secondary structural analyses of micro RNAs and their precursors in Pan troglodytes. International Journal of Computational Biology, 2, 35-37.
[35] Das, K.A., Ganguli, S., Gupta, S. and Datta, A. (2011) Secondary structural analysis of microRNA and their precursors in plants. International Journal of Agriculture Sciences, 3, 62-64.
[36] Ganguli, S., Dey, K.S., Dhar, P., Basu, P., Roy, P. and Datta, A. (2010) Catalytic RNA world relics in Dicer RNAs. International Journal of Genetics, 2, 8-17.
[37] Ganguli, S., De, M. and Datta, A. (2011) Analyses of Argonaute—MicroRNA interactions in Zea mays. International Journal of Computational Biology, 2, 32-34.
[38] Ganguli, S. and Datta, A. (2011) RNAi—Interactomics and therapeutics. In: Gupta, V.K., et al., RNAi Technology, Chapter 19, CRC Press, Taylor & Francis Group, Boca Raton, 347-356.
[39] Ganguli, S., Mitra, S. and Datta, A. (2011) Antagomirbase: A putative antagomir database. Bioinformation, 7, 41-43. doi:10.6026/97320630007041
[40] Licatalosi, D.D. and Darnell, B.R. (2006) Splicing regulation in neurologic disease. Neuron, 52, 93-101. doi:10.1016/j.neuron.2006.09.017
[41] Piriyapongsa, J., Jordan, K.I., Conley, B.A., Ronan, T., and Smalheiser, R.N. (2011) Transcription factor binding sites are highly enriched within microRNA precursor sequences. Biology Direct, 6, 61.
[42] Song Gao, J., Zhang, Y., Li, M., Tucker, L.D., Machan, J.T., Quesenberry, P., Rigoutsos, I. and Ramratnam, B. (2010) Atypical transcription of microRNA gene fragments. Nucleic Acids Research, 38, 2775-2787.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.