Reverse Engineering Approach to Quantum Electrodynamics

Full-Text HTML XML Download Download as PDF (Size:238KB) PP. 561-571
DOI: 10.4236/jmp.2013.45079    3,050 Downloads   5,542 Views   Citations
Author(s)    Leave a comment


The S matrix of e-e scattering has the structure of a projection operator that projects incoming separable product states onto entangled two-electron states. In this projection operator the empirical value of the fine-structure constant α acts as a normalization factor. When the structure of the two-particle state space is known, a theoretical value of the normalization factor can be calculated. For an irreducible two-particle representation of the Poincaré group, the calculated normalization factor matches Wyler’s semi-empirical formula for the fine-structure constant α. The empirical value of α, therefore, provides experimental evidence that the state space of two interacting electrons belongs to an irreducible two-particle representation of the Poincaré group.

Cite this paper

W. Smilga, "Reverse Engineering Approach to Quantum Electrodynamics," Journal of Modern Physics, Vol. 4 No. 5, 2013, pp. 561-571. doi: 10.4236/jmp.2013.45079.


[1] W. Smilga, Journal of Physics: Conference Series, Vol. 343, 2012, Article ID: 012112. doi:10.1088/1742-6596/343/1/012112
[2] R. Haag, Matematisk-Fysiske Meddelelser Udgivet af. Det Kongelige Danske Videnskabernes, Vol. 29, 1955, pp. 1-37.
[3] N. D. Mermim, Physics Today, Vol. 57, 2004, pp. 10-12. doi:10.1063/1.1768652
[4] E. Eilam, “Reversing: Secrets of Reverse Engineering,” John Wiley & Sons, Hoboken, 2005.
[5] Wikipedia, “Reverse Engineering.”
[6] R. P. Feynman, Physical Review, Vol. 76, 1949, pp. 749-759. doi:10.1103/PhysRev.76.749
[7] R. P. Feynman, Physical Review, Vol. 76, 1949, pp. 769-789. doi:10.1103/PhysRev.76.769
[8] R. P. Feynman, Physical Review, Vol. 80, 1950, pp. 440-457. doi:10.1103/PhysRev.80.440
[9] W. Heisenberg, Zeitschrift für Physik, Vol. 120, 1943, pp. 513-538.
[10] G. Scharf, “Finite Quantum Electrodynamics,” Springer, Berlin, Heidelberg, New York, 1989. doi:10.1007/978-3-662-01187-4
[11] A. Wyler, Comptes rendus de l’Académie des Sciences, Vol. 271A, 1971, pp. 186-188.
[12] R. Gilmore, “From a Visit to Armand Wyler in Zürich.”
[13] B. Robertson, Physical Review Letters, Vol. 27, 1971, pp. 1545-1547. doi:10.1103/PhysRevLett.27.1545
[14] D. J. Gross, Physics Today, Vol. 42, 1989, pp. 9-11. doi:10.1063/1.2811237
[15] E. B. Vinberg, “Homogeneous Bounded Domain,” Encyclopedia of Mathematics, Springer.
[16] L. K. Hua, “Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains,” Translations of Mathematical Monographs, Vol. 6, American Mathematical Society, Providence, 1963.
[17] Link to animation of Mobius transformation:
[18] I. S. Sharadze, “Sphere,” Encyclopedia of Mathematics, Springer.
[19] D. Hanneke, S. Fogwell and G. Gabrielse, Physical Review Letters, Vol. 100, 2008, Article ID: 120801. doi:10.1103/PhysRevLett.100.120801
[20] H. Joos, Fortschritte der Physik, Vol. 10, 1962, pp. 65-146. doi:10.1002/prop.2180100302
[21] S. S. Schweber, “An Introduction to Relativistic Quantum Field Theory,” Harper & Row, New York, 1962, pp. 36-53.
[22] S. S. Schweber, “An Introduction to Relativistic Quantum Field Theory,” Harper & Row, New York, 1962, pp. 272-280.
[23] R. L. Jaffe, Physical Review, Vol. D72, 2005, Article ID: 021301.
[24] R. Gilmore, Physical Review Letters, Vol. 28, 1972, pp. 462-464. doi:10.1103/PhysRevLett.28.462
[25] W. Smilga, “Lokale Eigenschaften von Vielteilchensystemen in einer de Sitter-Invarianten Quantenmechanik,” Dissertation, Eberhard-Karl-Universitat, Tübingen, 1972.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.