Thermal, infrared spectroscopy and molecular modeling characterization of bone: An insight in the apatite-collagen type I interaction
Alejandro Heredia, Maria Colin-Garcia, Miguel A. Peña-Rico, Luis F. L. Aguirre Beltrán, José Grácio, Flavio F. Contreras-Torres, Andrés Rodríguez-Galván, Lauro Bucio, Vladimir A. Basiuk
Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), D.F. México, México.
Departamento de Fisica de Plasmas y de Intearcción de Radiación con la Materia, Instituto de Ciencias Nucleares, UNAM, D.F. México, México.
Departamento de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, UNAM, D.F. México, México.
Instituto de Biotecnología, UNAM, D.F. México, México.
Nanotechnology Research Division, Centre for Mechanical Technology & Automation, University of Aveiro, Aveiro, Portugal.
S.I.O.V. Instituto de Geología, UNAM, D.F. México, México.
DOI: 10.4236/abc.2013.32027   PDF    HTML   XML   4,875 Downloads   8,855 Views   Citations

Abstract

An insight into the interaction of collagen type I with apatite in bone tissue was performed by using differential scanning calorimetry, Fourier transform infrared spectroscopy, and molecular modeling. Scanning electron microscopy shows that bone organic content incinerate gradually through the different temperatures studied. We suggest that the amide regions of the type I collagen molecule (mainly C=O groups of the peptide bonds) will be important in the control of the interactions with the apatite from bone. The amide I infrared bands of the collagen type I change when interacting to apatite, what might confirm our assumption. Bone tissue results in a loss of thermal stability compared to the collagen studied apart, as a consequence of the degradation and further combustion of the collagen in contact with the apatite microcrystals in bone. The thermal behavior of bone is very distinctive. Its main typical combustion temperature is at 360°C with a shoulder at 550°C compared to the thermal behavior of collagen, with the mean combustion peak at ca. 500°C. Our studies with molecular mechanics (MM+ force field) showed different interaction energies of the collagen-like molecule and different models of the apatite crystal planes. We used models of the apatite (100) and (001) planes; additional two planes (001) were explored

with phosphate-rich and calcium-rich faces; an energetic preference was found in the latter case. We preliminary conclude that the peptide bond of collagen type I is modified when the molecule interacts with the apatite, producing a decrease in the main peak from ca. 500°C in collagen, up to 350°C in bone. The combustion might be related to collagen type I, as the ΔH energies present only small variations between mineralized and non-mineralized samples. The data obtained here give a molecular perspective into the structural properties of bone and the change in collagen properties caused by the interaction with the apatite. Our study can be useful to understand the biological synthesis of minerals as well as the organic-inorganic interaction and the synthesis of apatite implant materials.

Share and Cite:

Heredia, A. , Colin-Garcia, M. , Peña-Rico, M. , Beltrán, L. , Grácio, J. , Contreras-Torres, F. , Rodríguez-Galván, A. , Bucio, L. and Basiuk, V. (2013) Thermal, infrared spectroscopy and molecular modeling characterization of bone: An insight in the apatite-collagen type I interaction. Advances in Biological Chemistry, 3, 215-223. doi: 10.4236/abc.2013.32027.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Addadi, L. and Weiner, S. (1997) Nature, 389, 912-915. doi:10.1038/40010
[2] Camacho, N.P., Rinnerthaler, S., Paschalis, E.P., Mendelsohn, R., Boskey, A.L. and Fratzl, P. (1999) Complementary information on bone ultrastructure from scanning small angle X-ray scattering and fourier-transforminfrared microspectroscopy. Bone, 25, 287-293. doi:10.1016/S8756-3282(99)00165-9
[3] Feng, Q.L., Cui, F.Z., Pu, G., Wang, R.Z. and Li, H.D. (2000) Crystal orientation, toughening mechanisms and a mimic of nacre. Materials Science and Engineering C, 11, 19-25. doi:10.1016/S0928-4931(00)00138-7
[4] Fratzl, P. and Weinkamer, R. (2007) Nature’s hierarchical materials. Progress in Materials Science, 52, 1263-1334. doi:10.1016/j.pmatsci.2007.06.001
[5] Gupta, H.S., Seto, J., Wagermaier, W., Zaslansky, P., Boesecke, P. and Fratzl, P. (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proceedings of the National Academy of Sciences, 103, 17741-17746. doi:10.1073/pnas.0604237103
[6] Sandy, C., Marks, J. and Hermey, D.C. (1996) The structure and development of bone. Academic Press, San Diego.
[7] Tang, R., Wang, L., Orme, C.A., Bonstein, T., Bush, P.J. and Nancollas, G.H. (2004) Dissolution at the nanoscale: Self-preservation of biominerals. Angewandte Chemie International Edition, 43, 2697-2701. doi:10.1002/anie.200353652
[8] Bradt, J., Mertig, M., Teresiak, A. and Pompe, W. (1999) Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chemistry of Material, 11, 2694-2701. doi:10.1021/cm991002p
[9] Palmer, L.C., Newcomb, C.J., Kaltz, S.R., Spoerke, E.D. and Stupp, S.I. (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews, 108, 4754-4783. doi:10.1021/cr8004422
[10] Katti, K.S. and Katti, D.R. (2006) Why is nacre so tough and strong? Materials Science and Engineering: C, 26, 1317-1324. doi:10.1016/j.msec.2005.08.013
[11] Rhee, S., Lee, J.D. and Tanaka, J. (2000) Nucleation of hydroxyapatite crystal through chemical interaction with collagen. Journal of the American Ceramic Society, 83, 2890-2892. doi:10.1111/j.1151-2916.2000.tb01656.x
[12] Pokroy, B., Quintana, J.P., Caspi, E.A.N., Berner, A. and Zolotoyabko, E. (2004) Natural Material, 3, 900-902. doi:10.1038/nmat1263
[13] McNally, E.A., Schwarcz, H.P., Botton, G.A. and Arsenault, A.L. (2012) A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS ONE, 7, e29258. doi:10.1371/journal.pone.0029258
[14] Nudelman, F., Pieterse, K., George, A., Bomans, P.H.H., Friedrich, H., Brylka, L.J., Hilbers, P.A.J., de With, G. and Sommerdijk, N.A.J.M. (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Natural Material, 9, 1004-1009. doi:10.1038/nmat2875
[15] Addadi, L. and Weiner, S. (1985) Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. Proceedings of the National Academy of Sciences, 82, 4110-4114. doi:10.1073/pnas.82.12.4110
[16] Xie, B. and Nancollas, G.H. (2010) How to control the size and morphology of apatite nanocrystals in bone. Proceedings of the National Academy of Sciences, 107, 22369-22370. doi:10.1073/pnas.1017493108
[17] Wong, K.K.W. and Mann, S. (1998) Small-scale structures in biomineralisation and biomimetic materials chemistry. Current Opinion in Colloid & Interface Science, 3, 63-68.
[18] Lozano, L.F., Pe?a-Rico, M.A., Heredia, A., OcotlánFlores, J., Gómez-Cortés, A., Velázquez, R., Belío, I.A. and Bucio, L. (2003) Thermal analysis study of human bone. Journal of Material Science, 38, 4777-4782. doi:10.1023/A:1027483220584
[19] Christopher, A.M. and Nicholas, C.A. (2011) Thermal stabilization of collagen in skin and decalcified bone. Physical Biology, 8, 026002. doi:10.1088/1478-3975/8/2/026002
[20] Sakae, T., Mishima, H., Kozawa, Y. and LeGeros, R.Z. (1995) Thermal stability of mineralized and demineralized dentin: A differential scanning calorimetric study. Connective Tissue Research, 33, 193-196. doi:10.3109/03008209509017001
[21] Peters, F., Schwarz, K. and Epple, M. (2000) The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochimica Acta, 361, 131-138. doi:10.1016/S0040-6031(00)00554-2
[22] Lozano, L.F., Pe?a-Rico, M.A., Jang-Cho, H., Heredia, A., Villarreal, E., Ocotlán-Flores, J., Gomez-Cortes, A.L., Aranda-Manteca, F.J., Orozco, E. and Bucio, L. (2002) Thermal Properties of Mineralized and Non Mineralized Type I Collagen in Bone, MRS Proceedings, 724, N7.6.
[23] Bo?elmann, F., Romano, P., Fabritius, H., Raabe, D. and Epple, M. (2007) The composition of the exoskeleton of two crustacea: The American lobster Homarus Americanus and the edible crab Cancer pagurus. Thermochimica Acta, 463, 65-68. doi:10.1016/j.tca.2007.07.018
[24] Chernorukov, N.G., Knyazev, A.V. and Bulanov, E.N. (2011) Phase transitions and thermal expansion of apatite-structured compounds. Inorganic Materials, 47, 172177. doi:10.1134/S002016851101002X
[25] Heredia, A., Lozano, L.F., Martínez-Matías, C.A., Pe?a, M.A., Rodríguez-Hernández, A.G., Velázquez, R., García-Gardu?o, M.V., Bucio, L. and Orozco, E. (2002) Microstructure and thermal expansion properties of ostrich eggshell. MRS Proceedings, 724, N7.5.
[26] Price, T.D., Manzanilla, L. and Middleton, W.D. (2000) Immigration and the ancient city of Teotihuacan in Mexico: A study using strontium isotope ratios in human bone and teeth. Journal of Archaeological Science, 27, 903913. doi:10.1006/jasc.1999.0504
[27] Aguirre-Beltrán, L.L., Barbero, A.H., Villarreal, E., Ocotlán-Flores, J., Orozco, E. and Bucio, L. (2006) In: Jiménez-López, J.C.S., González, Pompa, J.A. y Padilla and Ortíz-Pineda, F., Eds., El hombre temprano en américa y sus implicaciones en el poblamiento de la cuenca de méxico: Primer simposio Internacional CONACULTA, Instituto Nacional de Antropología e Historia, México, 274.
[28] Hyperchem? release6. Windows Molecular Modeling System, hypercube, Inc. and Autodesk, Inc. Developed by Hypercube, Inc.
[29] Heredia, A., Aguilar-Franco, M., Maga?a, C., Flores, C., Pi?a, C., Velázquez, R., Sch?ffer, T.E., Bucio, L. and Basiuk, V.A. (2007) Structure and interactions of calcite spherulites with α-chitin in the brown shrimp (Penaeus aztecus) shell. Materials Science and Engineering: C, 27, 8-13. doi:10.1016/j.msec.2005.11.003
[30] Bellamy, L.J. (1975) The infra-red spectra of complex molecules. Chapman and Hall, London. doi:10.1007/978-94-011-6017-9
[31] Hlady, V. and Buijs, J. (2002) Local and global optical spectroscopic probes of adsorbed proteins. Marcel Dekker Inc., Santa Barbara, California.
[32] Magne, D., Pilet, P., Weiss, P. and Daculsi, G. (2001) Fourier transform infrared microspectroscopic investigation of the maturation of nonstoichiometric apatites in mineralized tissues: A horse dentin study. Bone, 29, 547552. doi:10.1016/S8756-3282(01)00609-3
[33] Fleet, M.E. (2009) Infrared spectra of carbonate apatites: ν2-Region bands. Biomaterials, 30, 1473-1481. doi:10.1016/j.biomaterials.2008.12.007
[34] Declercq, H.A., Verbeeck, R.M.H., De Ridder, L.I.F.J.M., Schacht, E.H. and Cornelissen, M.J. (2005) Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures. Biomaterials, 26, 4964-4974. doi:10.1016/j.biomaterials.2005.01.025
[35] Pauling, L. and Corey, R.B. (1951) Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proceedings of the National Academy of Sciences of USA, 37, 235-240. doi:10.1073/pnas.37.5.235
[36] Whitesell, J.K. and Chang, H.K. (1993) Directionally aligned helical peptides on surfaces. Science, 261, 73-76. doi:10.1126/science.261.5117.73
[37] Chang, M.C. and Tanaka, J. (2002) FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials, 23, 4811-4818. doi:10.1016/S0142-9612(02)00232-6
[38] Cruz, G.A.D., Toledo, S.D., Sallum, E.A. and Lima, A.F.M.D. (2007) Morphological and chemical analysis of bone substitutes by scanning electron microscopy and microanalysis by spectroscopy of dispersion energy. Brazilian Dental Journal, 18, 129-133. doi:10.1590/S0103-64402007000200008
[39] Termine, J., Eanes, E. and Conn, K. (1980) Phosphoprotein modulation of apatite crystallization. Calcified Tissue International, 31, 247-251. doi:10.1007/BF02407188
[40] Gries, K., Kr?ger, R., Kübel, C., Schowalter, M., Fritz, M. and Rosena Uer, A. (2009) Correlation of the orientation of stacked aragonite platelets in nacre and their connection via mineral bridges. Ultramicroscopy, 109, 230236. doi:10.1016/j.ultramic.2008.10.023
[41] Wagermaier, W., Gupta, H.S., Gourrier, A., Burghammer, M., Roschger, P. and Fratzl, P. (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases, 1, 1-5. doi:10.1116/1.2178386
[42] Zappone, B., Thurner, P.J., Adams, J., Fantner, G.E. and Hansma, P.K. (2008) Effect of Ca2+ Ions on the Adhesion and Mechanical Properties of Adsorbed Layers of Human Osteopontin. Biophysical Journal, 95, 29392950. doi:10.1529/biophysj.108.135889
[43] Gutsmann, T., Fantner, G.E., Kindt, J.H., Venturoni, M., Danielsen, S. and Hansma, P.K. (2004) Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization. Biophysical Journal, 86, 3186-3193. doi:10.1016/S0006-3495(04)74366-0
[44] Minary-Jolandan, M., Yu, M.-F., ACS Nano, (2009). Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone majid. ACS Nano, 3, 1859-1863.
[45] Heredia, A., Silva, S., Santos, C., Delgadillo, I. and Vrieling, E.G. (2009) Analysis of cross-sections of ditylum brightwelli biosilica by tapping mode atomic force microscopy and scanning electron microscopy. Journal of Scanning Probe Microscopy, 3, 19-24.
[46] Halperin, C., Mutchnik, S., Agronin, A., Molotskii, M., Urenski, P., Salai, M. and Rosenman, G. (2004) Piezoelectric effect in human bones studied in nanometer scale. Nano Letters, 4, 1253-1256. doi:10.1021/nl049453i

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.