Size-Resolved Water-Soluble Ionic Composition of Ambient Particles in an Urban Area in Southern Poland

Abstract

The ambient concentrations of PM-related anions (Cl-, NO3-, SO42-) and cations (Na+, NH4+, K+, Ca2+, Mg2+), total and contained in the PM fractions, were investigated in a typical urban area within the Silesian Agglomeration. A DEKATI low pressure impactor (DLPI) was used to sample PM and separate it into 13 fractions. The PM concentrations were determined gravimetrically, the ion content of the PM water extractsby means of ion chromatography (Herisau Metrohm AG ion chromatograph). In general, sulfate, nitrate, and ammonia had the greatest ambient concentrations. PM1 contained over 60% of the PM-related sulfate and nitrate mass and 90% of the ammonia mass. Also the majority of Na+ and Cl- were bound onto fine particles. Instead, more of the PM-related K+, Ca2+ and Mg2+ mass were in PM2.5-10 than in PM2.5. In the fine particles (sub-fractions of PM1.6) sulfate, nitrate and ammonia occur mainly as (NH4)2SO4 and NH4NO3. In the sub-fractions of PM1.6-10 sulfate and nitrate might also occur as K2SO4, CaSO4, Ca(NO3)2 or NaNO3.


Share and Cite:

W. Rogula-Kozłowska, I. Sówka, B. Mathews, K. Klejnowski, A. Zwoździak and K. Kwiecińska, "Size-Resolved Water-Soluble Ionic Composition of Ambient Particles in an Urban Area in Southern Poland," Journal of Environmental Protection, Vol. 4 No. 4, 2013, pp. 371-379. doi: 10.4236/jep.2013.44044.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Schwartz, “Air Pollution and Daily Mortality: A Review and Meta-Analysis,” Environmental Research, Vol. 64, No. 1, 1994, pp. 36-52. doi:10.1006/enrs.1994.1005
[2] K. R. Spurny, “Chemical Mixtures in Atmospheric Aerosols and Their Correlation to Lung Diseases and Lung Cancer Occurrence in the General Population,” Toxicology Letters, Vol. 88, No. 1-3, 1996, pp. 271-277. doi:10.1016/0378-4274(96)03749-6
[3] C. A. Pope and D. W. Dockery, “Health Effects of Fine Particulate Air Pollution: Lines that Connect,” Journal of the Air & Waste Management Association, Vol. 56, No. 6, 2006, pp. 709-742. doi:10.1080/10473289.2006.10464485
[4] G. Majewski and W. Przewozniczuk, “Study of Particulate Matter Pollution in Warsaw Area,” Polish Journal of Environmental Studies, Vol. 18, No 2, 2009, pp. 293-300.
[5] P. Huszar, K. Juda-Rezler, T. Halenka, H. Chervenkov, D. Syrakov, B. C. Krueger, P. Zanis, D. Melas, E. Katragkou, M. Reizer, W. Trapp and M. Belda, “Effects of Climate Change on Ozone and Particulate Matter over Central and Eastern Europe,” Climate Research, Vol. 50, No. 1, 2011. pp. 51-68. doi:10.3354/cr01036
[6] M. Kowalska, M. Skrzypek, F. Danso and J. Kasznia-Kocot, “Relative Risk of Total and Cardiovascular Mortality in the Eldery as Related to Short-Term Increases of PM2. 5 Concentrations in Ambient Air,” Polish Journal of Environmental Studies, Vol. 21, No. 5, 2012, pp. 1279-1285.
[7] E. López-Villarrubia, C. Iniguez, N. Peral, M. D. García and F. Ballester, “Characterizing Mortality Effects of Particulate Matter Size Fractions in the Two Capital Cities of the Canary Islands,” Environmental Research, Vol. 112, 2012, pp. 129-138. doi:10.1016/j.envres.2011.10.005
[8] M. Tainio, K. Juda-Rezler, M. Reizer, A. Warchalowski, W. Trapp and K. Skotak, “Future Climate and Adverse Health Effects Caused by Fine Particulate Matter Air Pollution: Case Study for Poland,” Regional Environmental Change, 2012 (in Press).
[9] K. T. Whitby, “The Physical Characteristics of Sulfur Aerosol,” Atmospheric Environment, Vol. 12, No. 1-3, 1978, pp. 135-139. doi:10.1016/0004-6981(78)90196-8
[10] D. Grosjean and J. H. Seinfeld, “Parametrization of the Formation Potential of Secondary Organic Aerosols,” Atmospheric Environment, Vol. 23, No. 8, 1989, pp. 1733-1147. doi:10.1016/0004-6981(89)90058-9
[11] E. R. Whitby and P. H. McMurry, “Modal Aerosol Dynamics Modeling,” Aerosol Science and Technology, Vol. 27, No. 6, 1997, pp. 673-688. doi:10.1080/02786829708965504
[12] W. C. Hinds, “Aerosol Technology. Properties, Behavior, and Measurement of Airborne Particles,” 2nd Edition, John Wiley & Sons, Inc., New York, 1998.
[13] K. Klejnowski, J. S. Pastuszka, W. Rogula-Kozlowska, E. Talik and A. Krasa, “Mass Size Distribution and Chemical Composition of the Surface Layer of Summer and Winter Airborne Particles in Zabrze, Poland,” Bulletin of Environmental Contamination and Toxicology, Vol. 88, No. 2, 2012, pp. 255-259. doi:10.1007/s00128-011-0452-3
[14] B. Ostro, W. Y. Feng, R. Broadwin, S. Green and M. Lipsett, “The Effects of Components of Fine Particulate Air Pollution on Mortality in California: Results from CALFINE,” Environmental Health Perspectives, Vol. 115, 2007, pp. 13-19. doi:10.1289/ehp.9281
[15] N. Englert, “Fine Particles and Human Health—A Review of Epidemiological Studies,” Toxicology Letters, Vol. 149, No. 1-3, 2004, pp. 235-242. doi:10.1016/j.toxlet.2003.12.035
[16] R. Rückerl, A. Schneider, S. Breitner, J. Cyrys and A. Peters, “Health Effects of Particulate Air Pollution: A Review of Epidemiological Evidence,” Inhalation Toxicology, Vol. 23, No. 10, 2011, pp. 555-592. doi:10.3109/08958378.2011.593587
[17] W. Zhang, T. Lei, Z. Q. Lin, H. S. Zhang, D. F. Yang, Z. G. Xi, J. H. Chen and W. Wang, “Pulmonary Toxicity Study in Rats with PM10 and PM2.5: Differential Responses Related to Scale and Composition,” Atmospheric Environment, Vol. 45, No. 4, 2011, pp. 1034-1041. doi:10.1016/j.atmosenv.2010.10.043
[18] J. H. Seinfeld, “Atmospheric Chemistry of Physics of Air Pollution,” Wiley, New York, 1986.
[19] A. Jaecker-Voirol and P. Mirabel, “Heteromolecular Nucleation in the Sulphuric Acid-Water System,” Atmospheric Environment, Vol. 23, No. 9, 1989, pp. 2053-2057. doi:10.1016/0004-6981(89)90530-1
[20] J. G. Watson, J. C. Chow, F. Lurmann and S. Musarra, “Ammonium Nitrate, Nitric Acid, and Ammonia Equilibrium in Wintertime Phoenix, AZ,” Journal of the Air & Waste Management Association, Vo. 44, No. 4, 1994, pp. 261-268.
[21] P. Korhonen, M. Kumala, A. Laaksonen, Y. Viisanen, R. McGraw and J. H. Seinfeld, “Ternary Nucleation of H2SO4, NH; and H2O in the Atmosphere,” Journal of Geophysical Research, Vol. 104, No. D21, 1999, pp. 26349-26353. doi:10.1029/1999JD900784
[22] G. J. Sun, L. Yao, L. Jiao, Y. Shi, Q. Y. Zhang, M. N. Tao, G. R. Shan and Y. He, “Characterizing PM2.5 Pollution of a Subtropical Metropolitan Area in China,” Atmospheric and Climate Sciences, Vol. 3, No. 1, 2013, pp. 100-110. doi:10.4236/acs.2013.31012
[23] M. Sillanpaa, R. Hillamo, S. Saarikoski, A. Frey, A. Pennanen, U. Makkonen, Z. Spolnik, R. Van Grieken, M. Branis, B. Brunekreef, M. C. Chalbot, T. Kuhlbusch, J. Sunyer, V. M. Kerminen, M. Kulmala and R. O. Salonen, “Chemical Composition and Mass Closure of Particulate Matter at Six Urban Sites in Europe,” Atmospheric Environment, Vol. 40, Suppl. 2, 2006, pp. S212-S223. doi:10.1016/j.atmosenv.2006.01.063
[24] T. Lee, X.-Y. Yu, B. Ayres, S. M. Kreidenweis, W. C. Malm and J. L. Collett Jr., “Observations of Fine and Coarse 5 Particle Nitrate at Several Rural Locations in the United States,” Atmospheric Environment, Vol. 42, No. 11, 2008, pp. 2720-2732. doi:10.1016/j.atmosenv.2007.05.016
[25] Y. Zhao and Y. Gao, “Mass Size Distributions of Water-Soluble Inorganic and Organic Ions in Size-Segregated Aerosols over Metropolitan Newark in the US East Coast,” Atmospheric Environment, Vol. 42, No. 18, 2008, pp. 4063-4078. doi:10.1016/j.atmosenv.2008.01.032
[26] W. Rogula-Kozlowska, K. Klejnowski, P. Rogula-Kopiec, B. Mathews and S. Szopa, “A Study on the Seasonal Mass Closure of Ambient Fine and Coarse Dusts in Zabrze, Poland,” Bulletin of Environmental Contamination and Toxicology, Vol. 88, No. 5, 2012, pp. 722-729. doi:10.1007/s00128-012-0533-y
[27] Z. Y. Meng and J. H. Seinfeld, “On the Source of the Submicrometer Droplet Mode of Urban and Regional Aerosols,” Aerosol Science and Technology, Vol. 20, No. 3, 1994, pp. 253-265. doi:10.1080/02786829408959681
[28] R. F. Pueshel, “Stratospheric Aerosols: Formation, Properties, Effect,” Journal of Aerosol Science, Vol. 27, No. 3, 1996, pp. 359-382.
[29] K. Klejnowski, W. Rogula-Kozlowska and A. Krasa, “Structure of Atmospheric Aerosol in Upper Silesia (Poland)-Contribution of PM2.5 to PM10 in Zabrze, Katowice and Czestochowa in 2005-2007,” Archives of Environmental Protection, Vol. 35, No. 2, 2009, pp. 3-13
[30] D. K. Deshmukh, Y. I. Tsai, M. K. Deb and P. Zarmpas, “Characteristics and Sources of Water-Soluble Ionic Species Associated with PM10 Particles in the Ambient Air of Central India,” Bulletin of Environmental Contamination and Toxicology, Vol. 89, No. 5, 2012, pp. 1091-1097. doi:10.1007/s00128-012-0806-5
[31] N. Chuersuwan, S. Nimrat, S. Lekphet and T. Kerdkumrai, “Levels and Major Sources of PM2.5 and PM10 in Bangkok Metropolitan Region,” Environment International, Vol. 34, No. 5, 2008, pp. 671-677. doi:10.1016/j.envint.2007.12.018
[32] W. Rogula-Kozlowska and K. Klejnowski, “Submicrometer Aerosol in Rural and Urban Backgrounds in Southern Poland—Primary and Secondary Components of PM1,” Bulletin of Environmental Contamination and Toxicology, Vol. 90, No. 1, 2013, pp. 103-109. doi:10.1007/s00128-012-0868-4
[33] C. Hüeglin, R. Gehrig, U. Baltensperger, M. Gysel, C. Monn and H. Vonmont, “Chemical Characterization of PM2.5, PM10 and Coarse Particles at Urban, Near-City and Rural Sites in Switzerland,” Atmospheric Environment, Vol. 39, No. 4, 2005, pp. 637-651. doi:10.1016/j.atmosenv.2004.10.027
[34] D. Temesi, A. Molnár, E. Mészáros, T. Feczkó, A. Gelencsér, G. Kiss and Z. Krivácsy, “Size Resolved Chemical Mass Balance of Aerosol Particles over Rural Hungary,” Atmospheric Environment, Vol. 35, No. 25, 2001, pp. 4347-4355. doi:10.1016/S1352-2310(01)00233-3
[35] P. Salvador, B. Artínano, X. Querol, A. Alastuey and M. Costoya, “Characterisation of Local and External Contributions of Atmospheric Particulate Matter at a Background Coastal Site,” Atmospheric Environment, Vol. 41, No. 1, 2007, pp. 1-17. doi:10.1016/j.atmosenv.2006.08.007
[36] M. Viana, X. Querol and A. Alastuey, “Chemical Characterisation of PM Episodes in NE Spain,” Chemosphere, Vol. 62, No. 6, 2006, pp. 947-956. doi:10.1016/j.chemosphere.2005.05.048
[37] M. Sillnapaa, S. Saarikoski, R. Hillamo, A. Pennanen, U. Makkonen, Z. Spolnik, R. Van Grieken, T. Koskentalo and R. O. Salonen, “Chemical Composition, Mass Size Distribution and Source Analysis of Longe-Range Transported Wildfire Smokes in Helsinki,” Science of the Total Environment, Vol. 350, No. 1-3, 2005, pp. 119-135. doi:10.1016/j.scitotenv.2005.01.024
[38] K. Ravindra, M. Stranger and R. Van Grieken, “Chemical Characterization and Multivariate Analysis of Atmospheric PM2.5 Particles,” Journal of Atmospheric Chemistry, Vol. 59, No. 3, 2008, pp. 199-218. doi:10.1007/s10874-008-9102-5
[39] M. Cackovic, V. Vadic, K. Sega and I. Beslic, “Acidic Anions in PM10 Particle Fraction in Zagreb Air, Croatia,” Bulletin of Environmental Contamination and Toxicology, Vol. 83, No. 2, 2009, pp. 188-192. doi:10.1007/s00128-009-9641-8
[40] G. Spindler, E. Brüggemann, T. Gnauk, A. Grüner, K. Müller and H. Herrmann, “A Four-Year Size-Segregated Characterization Study of Particles PM10, PM2.5 and PM1 Depending on Air Mass Origin at Melpitz,” Atmospheric Environment, Vol. 44, No. 2, 2010, pp. 164-173. doi:10.1016/j.atmosenv.2009.10.015
[41] I. Kopanakis, N. Lydakis-Simantiris, E. Katsivela, D. Pentari, P. Zarmpas, N. Mihalopoulos and M. Lazaridis, “Size Distribution and Chemical Composition of Airborne Particles at Akrotiri Research Station, Crete, Greece,” Global Nest Journal, Vol. 12, No. 1, 2010, pp. 54-62.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.