Geometrical Modeling of Walls of Multiwall Carbon Nanotube

Abstract

The relationship between the adjacent walls of the multiwall carbon nanotube (MWCNT) has been investigated and geometrical formulations have been derived. We have provided the relative index for each wall, owing to the diameter of the MWCNT. The index is higher for the smaller inner diameter MWCNT, and smaller for the higher inner diameter MWCNT. In the second formulation, we have put an empirical relation between the ratio of number of hexagons in the adjacent walls of two different sub-lattices. One can speculate the properties of inner walls from these relations by obtaining the accurate diameter of the concentric walls of a MWCNT.

Share and Cite:

K. Hembram, K. Reddy and G. Rao, "Geometrical Modeling of Walls of Multiwall Carbon Nanotube," Open Journal of Composite Materials, Vol. 3 No. 2A, 2013, pp. 10-15. doi: 10.4236/ojcm.2013.32A002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, 1991, pp. 56-58. doi:10.1038/354056a0
[2] M. S. Dresselhaus, G. Dresselhaus and R. Saito, “Carbon Fibers Based on C60 and Their Symmetry,” Physical Review B, Vol. 45, No. 11, 1992, pp. 6234-6242. doi:10.1103/PhysRevB.45.6234
[3] R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, “Electronic Structure of Chiral Graphene Tubules,” Applied Physics Letters, Vol. 60, No. 18, 1992, pp. 2204-2206. doi:10.1063/1.107080
[4] M. S. Dresselhaus, G. Dresselhaus and R. Saito, “Physics of Carbon Nanotubes,” Carbon, Vol. 33, No. 7, 1995, pp. 883-891. doi:10.1016/0008-6223(95)00017-8
[5] L. Chkhartishvili and T. Berberashvili, “Geometrical Model Based Refinements in Nanotube Chiral Indices,” World Journal of Nano Science and Engineering, Vol. 1, No. 2, 2011, pp. 45-50. doi:10.4236/wjnse.2011.12007
[6] C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus and M. S. Dresselhaus, “Size Effects in Carbon Nanotubes,” Physical Review Letters, Vol. 81, No. 9, 1998, pp. 1869-1872. doi:10.1103/PhysRevLett.81.1869
[7] R. Saito, G. Dresselhaus and M. S. Dresselhaus, “Physical Properties of Carbon Nanotubes,” World Scientific, Singapore, 1998.
[8] K. P. S. S. Hembram and G. Mohan Rao, “Structural and Surface Features of Multiwall Carbon Nanotube,” Applied Surface Science, Vol. 257, No. 13, 2011, pp. 5503-5507. doi:10.1016/j.apsusc.2010.12.132
[9] K. P. S. S. Hembram, K. Reddappa Reddy and G. Mohan Rao, “Determination of Growth Direction of Carbon Nanotubes from the Shape of the Catalyst Particle,” International Journal of Nanoscience, Vol. 10, No. 4-5, 2011, pp. 1045-1050. doi:10.1142/S0219581X11008575
[10] K. D. Vargheese and G. Mohan Rao, “Electron Cyclotron Resonance Plasma Source for ion Assisted Deposition of Thin Films,” Review of Scientific Instruments, Vol. 71, No. 2, 2000, pp. 467-472. doi:10.1063/1.1150225
[11] S. K. Patra and G. Mohan Rao, “Field Emission Current Saturation of Aligned Carbon Nanotube—Effect of Density and Aspect Ratio,” Journal of Applied Physics, Vol. 100, No. 2, 2006, Article ID: 024319. doi:10.1063/1.2219082
[12] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, Vol. 283, No. 5401, 1999, pp. 512-514. doi:10.1126/science.283.5401.512
[13] D. H. Kim, H. S. Jang, C. D. Kim, D. S. Cho, H. S. Yang, H. D. Kang, B. K. Min and H. R. Lee, “Dynamic Growth Rate Behavior of a Carbon Nanotube Forest Characterized by in Situ Optical Growth Monitoring,” Nano Letters, Vol. 3, No. 6, 2003, pp. 863-865. doi:10.1021/nl034212g
[14] M. M. Shaijumon, A. L. M. Reddy and S. Ramaprabhu, “Single Step Process for the Synthesis of Carbon Nanotubes and Metal/Alloy-Filled Multiwalled Carbon Nanotubes,” Nanoscale Research Letters, Vol. 2, 2007, pp. 75-80. doi:10.1007/s11671-006-9033-5
[15] R. K. Sahoo, V. Daramalla and C. Jacob, “Multiwall and Bamboo-Like Carbon Nanotube Growth by CVD Using a Semimetal as a Catalyst,” Materials Science and Engineering: B, Vol. 177, No. 1, 2012, pp. 79-85. doi:10.1016/j.mseb.2011.09.003
[16] K. P. S. S. Hembram and G. Mohan Rao, “Origin of Structural Defects in Multiwall Carbon Nanotube,” Materials Letters, Vol. 72, 2012, pp. 68-70. doi:10.1016/j.matlet.2011.12.078
[17] R. T. K. Baker, “Catalytic Growth of Carbon Filaments,” Carbon, Vol. 27, No. 3, 1989, pp. 315-323. doi:10.1016/0008-6223(89)90062-6
[18] M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C. H. Kiang and M. S. Dresselhaus, “Stacking Nature of Graphene Layers in Carbon Nanotube and Nanofibers”, Journal of Physics and Chemistry of Solids, Vol. 58, No. 11, 1997, pp. 1707-1712. doi:10.1016/S0022-3697(97)00055-3
[19] M. Liu and J. M. Cowley, “Structures of Carbon Nanotubes Studied by HRTEM and Nanodiffraction,” Ultramicroscopy, Vol. 53, No. 4, 1994, pp. 333-342. doi:10.1016/0304-3991(94)90046-9
[20] X. Sun, C. H. Kiang, M. Endo, K. Takeuchi, T. Furuta and M. S. Dresselhaus, “Stacking Characteristics of Graphene Shells in Carbon Nanotubes,” Physical Review B, Vol. 54, No. 18, 1996, pp. R12629-R12632. doi:10.1103/PhysRevB.54.R12629
[21] M. Bretz, B. G. Demczyk and L. Zhang, “Structural Imaging of a Thick Walled Carbon Nanotube,” Journal of Crystal Growth, Vol. 141, No. 1-2, 1994, pp. 304-309. doi:10.1016/0022-0248(94)90124-4

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.