Combination of specific monoclonal antibodies allow identification of soluble aggregates of by sandwich ELISA

Abstract

Aggregate amyloid beta protein1-42 (Aβ1-42) can typically be found in the early stage of Alzheimer’s disease (AD). Aβ1-42 self-assembles and is highly toxic to neurons. Thus, recognizing aggregated Aβ1-42 is very important for elucidation of Aβ1-42 structure and for the diagnosis of AD. In this study, the specificity of the 79-3 monoclonal antibody against soluble aggre- gate Aβ1-42 was measured by sandwich Enzyme-Linked Immuno Sorbent Assay (ELISA). Eight monoclonal antibodies against both soluble aggregates and amorphous aggregates were used as primary antibodies. Soluble aggregates and amorphous aggregates were used as antigen. As secondary antibody, HRP was labeled with the 79-3 monoclonal antibody. The reactivity of the 79-3 monoclonal antibody against soluble aggregates was confirmed in all combinations, but little reactivity against amorphous aggregates was found. Furthermore, we performed the above sandwich ELISA using the 37-11 antibody, which is reactive against large oval aggregates (LOA) that occur in micro aggregates, instead of the 79-3 antibody. The 77-3 antibody is 1 of the 8 monoclonal antibodies against soluble aggregates; amorphous aggregates also reacted with the 37-11 antibody. These results indicated that soluble aggregates are specifically recognized by a combination of different antibodies. The combined use of these antibodies can be applied to the diagnosis of AD and to defining the structure of the Aβ1-42.

Share and Cite:

Shimizu, T. , Yoshimune, K. , Komoriya, T. , Akiyama, T. , Ye, X. and Kohno, H. (2013) Combination of specific monoclonal antibodies allow identification of soluble aggregates of by sandwich ELISA. Advances in Bioscience and Biotechnology, 4, 63-66. doi: 10.4236/abb.2013.44A009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hardy, J.A. and Higgins, G.A. (1992) Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256, 184- 185. doi:10.1126/science.1566067
[2] Hardy, J. and Selkoe, D.J. (2002) The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353-356. doi:10.1126/science.1072994
[3] Jhoo, H., Kim, H.C., Nabeshima, T., Yamada, K., Shin, E.J., Jhoo, W.K., Kim, W., Kang, K.S., Jo, S.A. and Woo, J.I. (2004) Beta-amyloid (1-42)-induced learning and memory deficits in mice: Involvement of oxidative burdens in the hippocampus and cerebral cortex. Behavioural Brain Research, 155, 185-196. doi:10.1016/j.bbr.2004.04.012
[4] Takahashi, T. and Mihara, H. (2008) Peptide and protein mimetics inhibiting amyloid-peptide aggregation. Accounts of Chemical Research, 41, 1309-1318. doi:10.1021/ar8000475
[5] LeVine 3rd, H. (1993) Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Science, 2, 404-410. doi:10.1002/pro.5560020312
[6] Gong, Y., Chang, L., Viola, K.L., Lacor, P.N., Lambert, M.P., Finch, C.E., Krafft, G.A. and Klein, W.L. (2003) Alzheimer’s disease-affected brain: Presence of oligomeric Abeta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proceedings of the National Academy of Sciences USA, 100, 10417-10422. doi:10.1073/pnas.1834302100
[7] Barghorn, S., Nimmrich, V., Striebinger A., Krantz, C., Keller, P., Janson, B., Bahr, M., Schmidt, M., Bitner, R.S., Harlan, J., Barlow, E., Ebert, U. and Hillen, H. (2005) Globular amyloid beta-peptide oligomer—A homogenous and stable neuropathological protein in Alzheimer’s disease. Journal of Neurochemistry, 95, 834-847. doi:10.1111/j.1471-4159.2005.03407.x
[8] Matsumura, S., Shinoda, K., Yamada, M., Yokojima, S., Inoue, M., Ohnishi, T., Shimada, T., Kikuchi, K., Masui, D., Hashimoto, S., Sato, M., Ito, A., Akioka, M., Takagi, S., Nakamura, Y., Nemoto, K., Hasegawa, Y., Takamoto, H., Inoue, H., Nakamura, S., Nabeshima, Y., Teplow, D.B., Kinjo, M. and Hoshi, M. (2011) Two distinct amyloid beta-protein (Abeta) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analyses. Journal of Biological Chemistry, 286, 11555-11562. doi:10.1074/jbc.M110.181313
[9] Bieschke, J., Herbst, M., Wiglenda, T., Friedrich, R.P., Boeddrich, A., Schiele, F., Kleckers, D., Lopez Del Amo, J.M., Grüning, B.A., Wang, Q., Schmidt, M.R., Lurz, R., Anwyl, R., Schnoegl, S., Fändrich, M., Frank, R.F., Reif, B., Günther, S., Walsh, D.M. and Wanker, E.E. (2011) Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nature Chemical Biology, 20, 93-101. doi:10.1038/nchembio.719
[10] Yu, L., Edalji, R., Harlan, J.E., Holzman, T.F., Lopez, A.P., Labkovsky, B., Hillen, H., Barghorn, S., Ebert, U., Richardson, P.L., Miesbauer, L., Solomon, L., Bartley, D., Walter, K., Johnson, R.W., Hajduk, P.J. and Olejniczak, E.T. (2009) Structural characterization of a soluble amyloid beta-peptide oligomer. Biochemistry, 48, 1870-1877. doi:10.1021/bi802046n
[11] Shimizu, T., Yoshimune, K., Komoriya, T., Akiyama, T., Ye, H. and Kohno, H. (2013) Monoclonal antibodies against large oval aggregates of Aβ1-42. Journal of Bioscience and Bioengineering, 115, 216-220. doi:10.1016/j.jbiosc.2012.09.007
[12] Wei, C.W., Peng, Y., Zhang, L., Huang, Q., Cheng, M., Liu, Y.N. and Li, J. (2011) Synthesis and evaluation of ferrocenoyl pentapeptide (Fc-KLVFF) as an inhibitor of Alzheimer’s Aβ1-42 fibril formation in vitro. Bioorganic and Medical Chemistry Letters, 21, 5818-5821. doi:10.1016/j.bmcl.2011.07.111
[13] Klaver, A.C., Patrias, L.M., Finke, J.M. and Loeffler, D.A. (2011) Specificity and sensitivity of the Abeta oligomer ELISA. Journal of Neuroscience Methods, 195, 249-254. doi:10.1016/j.jneumeth.2010.12.001
[14] Zhao, L.N., Long, H., Mu, Y. and Chew, L.Y. (2012) The toxicity of amyloid β oligomers. International Journal of Molecular Science, 13, 7303-7327. doi:10.3390/ijms13067303
[15] Klaver, A.C., Patrias, L.M., Coffey, M.P., Finke, J.M. and Loeffler, D.A. (2010) Measurement of anti-Abeta1-42 antibodies in intravenous immunoglobulin with indirect ELISA: The problem of nonspecific binding. Journal of Neuroscience Methods, 187, 263-269. doi:10.1016/j.jneumeth.2010.01.018
[16] Noguchi, A., Matsumura, S., Dezawa, M., Tada, M., Yanazawa, M., Ito, A., Akioka, M., Kikuchi, S., Sato, M., Ideno, S., Noda, M., Fukunari, A., Muramatsu, S., Itokazu, Y., Sato, K., Takahashi, H., Teplow, D.B., Nabeshima, Y., Kakita, A., Imahori, K. and Hoshi, M. (2009) Isolation and characterization of patient-derived, toxic, high mass amyloid beta-protein (Abeta) assembly from Alzheimer disease brains. Journal of Biological Chemistry, 284, 32895-32905. doi:10.1074/jbc.M109.000208
[17] Horikoshi, Y., Sakaguchi, G., Becker, A.G., Gray, A.J., Duff, K., Aisen, P.S., Yamaguchi, H., Maeda, M., Kinoshita, N. and Matsuoka, Y. (2004) Development of Abeta terminal end-specific antibodies and sensitive ELISA for Abeta variant. Biochemical and Biophysical Research Communications, 319, 733-737. doi:10.1016/j.bbrc.2004.05.051
[18] Murakami, K., Horikoshi-Sakuraba, Y., Murata, N., Noda, Y., Masuda, Y., Kinoshita, N., Hatsuta, H., Murayama, S., Shirasawa, T., Shimizu, T. and Irie, K. (2010) Monoclonal antibody against the turn of the 42-residue amyloid β-protein at positions 22 and 23. ACS Chemical Neuroscience, 17, 747-756. doi:10.5692/clinicalneurol.51.890

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.