Share This Article:

Zariski 3-Algebra Model of M-Theory

Full-Text HTML Download Download as PDF (Size:91KB) PP. 32-37
DOI: 10.4236/jmp.2013.44A006    4,118 Downloads   5,784 Views  
Author(s)    Leave a comment

ABSTRACT

We review on Zariski 3-algebra model of M-theory. The model is obtained by Zariski quantization of a semi-light-cone supermembrane action. The model has manifest N=1 supersymmetry in eleven dimensions and its relation to the supermembrane action is clear.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Sato, "Zariski 3-Algebra Model of M-Theory," Journal of Modern Physics, Vol. 4 No. 4A, 2013, pp. 32-37. doi: 10.4236/jmp.2013.44A006.

References

[1] V. T. Filippov, “n-Lie Algebras,” Siberian Mathematical Journal, Vol. 26, No. 6, 1985, Article ID: 126140.
[2] N. Kamiya, “A Structure Theory of Freudenthal-Kantor Triple Systems,” Journal of Algebra, Vol. 110, No. 1, 1987, pp. 108-123. doi:10.1016/0021-8693(87)90038-X
[3] S. Okubo and N. Kamiya, “Quasi-Classical Lie Superalgebras and Lie Supertriple Systems,” Communications in Algebra, Vol. 30, No. 8, 2002, pp. 3825-3850.
[4] J. Bagger and N. Lambert, “Modeling Multiple M2-Branes,” Physical Review D, Vol. 75, No. 4, 2007, Article ID: 045020. doi:10.1103/PhysRevD.75.045020
[5] A. Gustavsson, “Algebraic Structures on Parallel M2-Branes,” Nuclear Physics B, Vol. 811, No. 1-2, 2009, pp. 66-76. doi:10.1016/j.nuclphysb.2008.11.014
[6] J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple M2-Branes,” Physical Review D, Vol. 77, No. 6, 2008, Article ID: 065008. doi:10.1103/PhysRevD.77.065008
[7] S. Mukhi and C. Papageorgakis, “M2 to D2,” Journal of High Energy Physics, Vol. 5, 2008, p. 85.
[8] J. Gomis, G. Milanesi and J. G. Russo, “Bagger-Lambert Theory for General Lie Algebras,” Journal of High Energy Physics, Vol. 6, 2008, pp. 75.
[9] S. Benvenuti, D. Rodriguez-Gomez, E. Tonni and H. Verlinde, “ N= 8 Superconformal Gauge Theories and M2-Branes,” Journal of High Energy Physics, Vol. 1, 2009, p. 78.
[10] P.-M. Ho, Y. Imamura and Y. Matsuo, “M2 to D2 Revisited,” Journal of High Energy Physics, Vol. 7, 2008, p. 3.
[11] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “ N= 6 Superconformal Chern-Simons-Matter Theories, M2-Branes and Their Gravity Duals,” Journal of High Energy Physics, Vol. 10, 2008, p. 91.
[12] J. Bagger and N. Lambert, “Three-Algebras and N = 6 Chern-Simons Gauge Theories,” Physical Review D, Vol. 79, No. 2, 2009, Article ID: 025002. doi:10.1103/PhysRevD.79.025002
[13] Y. Nambu, “Generalized Hamiltonian dynamics,” Physical Review D, Vol. 7, No. 8, 1973, pp. 2405-2412. doi:10.1103/PhysRevD.7.2405
[14] H. Awata, M. Li, D. Minic and T. Yoneya, “On the Quantization of Nambu Brackets,” Journal of High Energy Physics, Vol. 2, 2001, p. 13. doi:10.1088/1126-6708/2001/02/013
[15] D. Minic, “M-Theory and Deformation Quantization,” 1999. arXiv:hep-th/9909022
[16] J. Figueroa-O’Farrill and G. Papadopoulos, “Pluecker-Type Relations for Orthogonal Planes,” Journal of Geometry and Physics, Vol. 49, No. 3-4, 2004, pp. 294-331. doi:10.1016/S0393-0440(03)00093-7
[17] G. Papadopoulos, “M2-Branes, 3-Lie Algebras and Plucker Relations,” Journal of High Energy Physics, Vol. 5, 2008, p. 54. doi:10.1088/1126-6708/2008/05/054
[18] J. P. Gauntlett and J. B. Gutowski, “Constraining Maximally Supersymmetric Membrane Actions,” Journal of High Energy Physics, Vol. 6, 2008, p. 53. doi:10.1088/1126-6708/2008/06/053
[19] D. Gaiotto and E. Witten, “Janus Configurations, Chern-Simons Couplings, and the Theta-Angle in N = 4 Super Yang-Mills Theory,” 2010. arXiv:0804.2907[hep-th]
[20] Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, “Janus Field Theories from Multiple M2-Branes,” Physical Review D, Vol. 78, No. 2, 2008, Article ID: 025027. doi:10.1103/PhysRevD.78.025027
[21] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, “ N= 5, 6 Superconformal Chern-Simons Theories and M2-Branes on Orbifolds,” Journal of High Energy Physics, Vol. 9, 2008, p. 2. doi:10.1088/1126-6708/2008/09/002
[22] M. Schnabl and Y. Tachikawa, “Classification of N = 6 Superconformal Theories of ABJM Type,” 2010. arXiv:0807.1102[hep-th]
[23] M. A. Bandres, A. E. Lipstein and J. H. Schwarz, “Ghost-Free Superconformal Action for Multiple M2-Branes,” Journal of High Energy Physics, Vol. 7, 2008, p. 117. doi:10.1088/1126-6708/2008/07/117
[24] P. de Medeiros, J. Figueroa-O’Farrill, E. Méndez-Escobar and P. Ritter, “On the Lie-Algebraic Origin of Metric 3-Algebras,” Communications in Mathematical Physics, Vol. 290, No. 3, 2009, pp. 871-902. doi:10.1007/s00220-009-0760-1
[25] S. A. Cherkis, V. Dotsenko and C. Saeman, “On Super-space Actions for Multiple M2-Branes, Metric 3-Algebras and Their Classification,” Physical Review D, Vol. 79, No. 8, 2009, Article ID: 086002. doi:10.1103/PhysRevD.79.086002
[26] P.-M. Ho, Y. Matsuo and S. Shiba, “Lorentzian Lie 3-Algebra and Toroidal Compactification of M/String Theory,” 2003. arXiv:0901.2003[hep-th]
[27] K. Lee and J. Park, “Three-Algebra for Supermembrane and Two-Algebra for Superstring,” 2009. arXiv:0902.2417[hep-th]
[28] P. de Medeiros, J. Figueroa-O’Farrill, E. Mendez-Escobar and P. Ritter, “Metric 3-Lie Algebras for Unitary Bagger-Lambert Theories,” Journal of High Energy Physics, Vol. 4, 2009, p. 37.
[29] C. Castro, “On n-Ary Algebras, Branes and Polyvector Gauge Theories in Noncommutative Clifford Spaces,” Journal of Physics A, Vol. 43, No. 36, 2010, Article ID: 365201. doi:10.1088/1751-8113/43/36/365201
[30] M. Sato, “Covariant Formulation of M-Theory,” International Journal of Modern Physics A, Vol. 24, No. 27, 2009, p. 5019. doi:10.1142/S0217751X09047661
[31] M. Sato, “On Supersymmetry of the Covariant 3-Algebra Model for M-Theory,” Journal of Modern Physics, Vol. 3 2012, p. 1813. doi:10.4236/jmp.2012.311226
[32] M. Sato, “Model of M-Theory with Eleven Matrices,” Journal of High Energy Physics, Vol. 7, 2010, p. 26. doi:10.1007/JHEP07(2010)026
[33] M. Sato, “Supersymmetry and the Discrete Light-Cone Quantization Limit of the Lie 3-Algebra Model of M-Theory,” Physical Review D, Vol. 85, No. 4, 2012, Article ID: 046003. doi:10.1103/PhysRevD.85.046003
[34] M. Sato, “Zariski Quantization as Second Quantization,” Physical Review D, Vol. 85, No. 12, 2012, Article ID: 126012. doi:10.1103/PhysRevD.85.126012
[35] E. Bergshoeff, E. Sezgin and P. K. Townsend, “Super-membranes and Eleven-Dimensional Supergravity,” Physics Letters B, Vol. 189, No. 1-2, 1987, pp. 75-78. doi:10.1016/0370-2693(87)91272-X
[36] T. Banks, N. Seiberg and S. Shenker, “Branes from Matrices,” Nuclear Physics B, Vol. 490, No. 1-2, 1997, pp. 91-106. doi:10.1016/S0550-3213(97)00105-3
[37] B. de Wit, J. Hoppe and H. Nicolai, “On the Quantum Mechanics of Supermembranes,” Nuclear Physics B, Vol. 305, No. 4, 1988, pp. 545-581. doi:10.1016/0550-3213(88)90116-2

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.