Share This Article:

Provitamin A Crops: Acceptability, Bioavailability, Efficacy and Effectiveness

Full-Text HTML XML Download Download as PDF (Size:180KB) PP. 430-435
DOI: 10.4236/fns.2013.44055    4,355 Downloads   6,505 Views   Citations

ABSTRACT

Vitamin A deficiency (VAD) is the world’s commonest cause of childhood blindness. More than half of these cases occur in developing countries. Animal sourced foods though good sources of vitamin A are too expensive for poor rural people. Crops biofortified with provitamin A offer a convenient and accessible source of vitamin A. The other micro-nutrient programs of fortification and supplementation require more expensive inputs. Biofortification programs have developed crops that are rich in provitamin A. These crops include: maize, golden rice, cassava and orange fleshed sweetpotato (OFSP). With exception of golden rice, the rest of the biofortified crops have received considerable acceptance among the communities. Both animal and human studies have shown that provitamin A from biofortified crops is highly bioavailable and have capacity to improve vitamin A status. After several years of research and promotion, it is time to fully commercialize provitamin A crops by encouraging farmers to start their large scale production and consumption.

Cite this paper

G. Tumuhimbise, A. Namutebi, F. Turyashemererwa and J. Muyonga, "Provitamin A Crops: Acceptability, Bioavailability, Efficacy and Effectiveness," Food and Nutrition Sciences, Vol. 4 No. 4, 2013, pp. 430-435. doi: 10.4236/fns.2013.44055.

References

[1] WHO/FAO, “Diet, Nutrition and the Prevention of Chronic Diseases,” Report of the Joint WHO/FAO Expert Consultation, WHO Technical Report Series, WHO, Geneva, 2003.
[2] V. Diaz, E. Hedren, J. Rueles and U. Svernberg, “Effect of Cell Wall Degrading Enzymes on in Vitro Carotene Bio accessibility in Lactic Acid Fermented Carrot Beverage,” Journal of Food Science, Vol. 69, No. 2, 2004, pp. 136-142.
[3] H. van den Berg, R. Faulks, H. F. Granado, J. Hirschberg, B. Olmedilla, G. Sandman and W. Stahl, “The Potential for the Improvement of Carotenoid Levels in Foods and the Likely Systemic Effects,” Journal of the Science of Food and Agriculture, Vol.80, No. 7, 2000, pp. 880-912. doi:10.1002/(SICI)1097-0010(20000515)80:7<880::AID-JSFA646>3.0.CO;2-1
[4] C. Hotz and C. McClafferty, “From Harvest to Health: Challenges for Developing Biofortified Staple Foods and Determining Their Impact on Micronutrient Status,” Food and Nutrition Bulletin, Vol. 28, No. 2, 2007, pp. 1776-1783.
[5] P. Nestel, H. E. Bouis, J. V. Meenakshi and W. Pfeiffer, “Biofortification of Staple Food Crops,” Journal of Nutri tion, Vol. 136, No. 4, 2006, pp. 1064-1067.
[6] S. A. Tanumihardjo, “Food-Based Approaches for En suring Adequate Vitamin A Nutrition,” Comprehansive Reviews in Food Science and Food Safety, Vol. 7, No. 4, 2008, pp. 373-381.
[7] S. A. Tanumihardjo, H. Bouis, C. Hotz, J. V. Meenakshi and B. McClafferty, “Biofortification of Staple Crops: An Emerging Strategy to Combat Hidden Hunger,” Comprehansive Reviews in Food Science and Food Safety, Vol. 7, No. 4, 2008, pp. 329-334.
[8] K. Yonekura-Sakakibara and K. Saito, “Review: Genetically Modified Plants for the Promotion of Human Health,” Biotechnology Letters, Vol. 28, No. 24, 2006, pp. 1983-1991. doi:10.1007/s10529-006-9194-4
[9] S. Chowdhury, J. V. Meenashi, K. I. Tomlins and C. Owori, “Are Consumers in Developing Countries Willing to Pay More for Micronutrient-Dense Biofortified Foods? Evidence from a Field Experiment in Uganda,” American Journal Agricultural Economics, Vol. 93, No. 1, 2011, pp. 83-97.
[10] P. J. van Jaarsveld, M. Faber, S. A. Tannumihardjo, P. Nestel, J. C. Lombard and A. J. S. Benade, “β-Carotene Rich Orange Fleshed Sweet Potatoes Improve the Vita min A Status of Primary School Children Assessed with the Modified-Relative-Dose-Response Test,” American Journal of Clinical Nutrition, Vol. 81, No. 5, 2005, pp. 1080-1087.
[11] L. Low, P. Kinyae, S. Gichuki, M. A. Oyunga, V. Hag enimana and J. Kabira, “Combating Vitamin A Deficiency through the Use of Sweet Potato,” CIP, Lima, 1997.
[12] K. Pillary, J. Derera, M. Siwela and F. J. Veldman, “Con sumer Acceptance of Yellow, Provitamin A-Biofortified Maize in KwaZulu-Natal,” South African Journal of Clinical Nutrition, Vol. 24, No. 4, 2011, pp. 186-191.
[13] R. Stevens and A. Winter-Nelson, “Consumer Acceptance of Pro-Vitamin A-Biofortified Maize in Maputo, Mozambique,” Food Policy, Vol. 33, No. 4, 2008, pp. 341-351.
[14] T. Muzhingi, A. S. Langyintuo, L. C. Malaba and M. Banziger, “Consumer Acceptability of Yellow Maize Products in Zimbabwe,” Food Policy, Vol. 33, No. 4, 2008, pp. 352-361. doi:10.1016/j.foodpol.2007.09.003
[15] H. De Groote and S. C. Kimenju, “Comparing Consumer Preferences for Color and Nutritional Quality in Maize: Application of a Semi-Double Bound Logistic Model on Urban Consumers in Kenya,” Food Policy, Vol. 33, No. 4, 2008, pp. 362-270. doi:10.1016/j.foodpol.2008.02.005
[16] R. O. M. Mwanga, B. Odongo, C. Niringiye and A. Alajo, “Release of Two Orange-Fleshed Sweet Potato Cultivars, ‘SPK004’ (‘Kakamega’) and ‘Ejumula’, in Uganda,” HortScience, Vol. 42, No. 7, 2007, pp. 1728-1730.
[17] O. Neidecker-Gonzales, P. Nestel and H. Bouis, “Estimating the Global Costs of Vitamin A Capsule Supplementation: A Review of the Literature,” Food and Nutrition Bulletin, Vol. 28, No. 3, 2007, pp. 307-316.
[18] J. V. Meenakshi, N. Johnson, V. M. Manyong, H. De Groote, J. Javelosa, D. Yanggen and E. Meng, “How Cost Effective Is Biofortification in Combating Micronutrient Malnutrition? An Exante Assessment,” Harvest Plus Working Paper No. 2, Wasgington DC, 2007.
[19] Q. Matin, S. Alexander and J. V. Meenakshi, “Economics of Biofortification,” Agricultural Economics, Vol. 37, No. 1, 2007, pp. 119-133.
[20] J. V. Meenakshi, N. Johnson, V. Manyong, H. DeGroote, J. Javelosa, D. Yanggen, F. Naher, C. Gonzales, J.Garcia and E. Meng, “How Cost-Effective Is Biofortification in Combating Micronutrient Malnutrition? An Exante As sessment,” World Development, Vol. 38 No. 1, 2010, pp. 64-75. doi:10.1016/j.worlddev.2009.03.014
[21] A. C. BovellBenjamin and L. T. Steve, “Sweetpotato: A Review of Its Past Present and Future Role in Human Nutrition,” Advances in Food Nutrition Research, Vol. 52, 2007, pp. 1-59. doi:10.1016/S1043-4526(06)52001-7
[22] P. J. van Jaarsveld, M. De Wet, E. Harmse, P. Nestel and D. B. Rodriguez-Amaya, “Retention of B-Carotene in Boiled, Mashed Orange-Fleshed Sweet Potato,” Journal of Food Composition and Analysis, Vol. 19 No. 4, 2006, pp. 321-329. doi:10.1016/j.jfca.2004.10.007
[23] S. A.Tanumihardjo, “Factors Influencing the Conversion of Carotenoids to Retinol: Bioavailability to Conversion to Bioefficacy,” International Journal of Vitamin Research, Vol. 72, No. 1, 2002, pp. 40-45. doi:10.1024/0300-9831.72.1.40
[24] J. Low, M. Arimond, N. Osman, B. Cunguara, B. Zano and D. Tschirley, “A Food-Based Approach Introducing Orange-Fleshed Sweet Potatoes Increased Vitamin A Intake and Serum Retinol Concentrations in Young Children in Rural Mozambique,” The Journal of Nutrition, Vol. 137, No. 5, 2007, pp. 1320-1327.
[25] M. J. Haskell, K. M. Jamil, F. Hassan, J. M. Peerson, M. I. Hossain, G. J. Fuchs and K. H. Brown, “Daily Consumption of Indian Spinach (Basella alba) or Sweet Potatoes Has a Positive Effect on Total Body Vitamin A Stores in Bangladesh Men,” American Journal of Clinical Nutrition, Vol. 80, No. 3, 2004, pp. 705-714.
[26] E. Boy and A. Miloff, “Provitamin A Carotenoid Reten tion in Orange Sweetpotato,” Sight and Life Magazine, No. 3, 2009, pp. 27-33.
[27] A. Bengtsson, A. Namutebi, M. L. Alimnger and U. Svanberg, “Effects of Various Traditional Processing Methods on the All-Trans-β-Carotene Content of Orange Fleshed Sweetpotato,” Journal of Food Composition and Analysis, Vol. 21, No. 2, 2008, pp. 134-143. doi:10.1016/j.jfca.2007.09.006
[28] J. P. Mills, G. A. Tumuhimbise, K. M. Jamil, S. G. Thak kar, M. L. Failla and S. A. Tanumihardjo, “Sweet Potato b-Carotene Bioefficacy Is Enhanced by Dietary Fat and Not Reduced by Soluble Fiber in Mongolian Gerbils,” Journal of Nutrition, Vol. 139, No. 1, 2009, pp. 44-50. doi:10.3945/jn.108.098947
[29] X. Ye, S. Al-Babili, A. Kl?ti, J. Zhang, P. Lucca, P. Beyer and I. Potrykus, “Engineering the Provitamin A (Beta Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm,” Science, Vol. 287, No. 5451, 2000, pp. 303-305. doi:10.1126/science.287.5451.303
[30] J. A. Paine, C. A. Shipton, S. Chaggar, R. M. Howells, M. J. Kennedy, G. Vernon and R. Drake, “Improving the Nutritional Value of Golden Rice through Increased Pro Vitamin A Content,” Nature Biotechnology, Vol. 23, No. 4, 2005, pp. 482-487. doi:10.1038/nbt1082
[31] G. Tang, Y. Hu, S. A. Yin, G. E. Dallal, M. A. Grusak and R. M. Russel, “β-Carotene in Golden Rice Is as Good as β-Carotene in Oil at Providing Vitamin A to Children,” American Journal of Clinical Nutrition, Vol. 96, No. 3, 2012, pp. 658-664. doi:10.3945/ajcn.111.030775
[32] G. Tang, J. Qin, G. Dolnikowski, G. R. Russell and M. A. Grusak, “Golden Rice Is an Effective Source of Vitamin A,” American Journal of Clinical Nutrition, Vol. 89, No. 6, 2009, pp. 1776-1783. doi:10.3945/ajcn.2008.27119
[33] C. Pray, R. Paalberg and L. Unnevehr, “Patterns of Political Response to Biofortified Varieties of Crops Produced with Different Breeding Techniques and Agronomic Traits,” The Journal of Agrobiotechnology Management and Economics, Vol. 10, No. 3, 2007, pp. 135-143.
[34] P. W. Heisey and W. Mwangi, “Fertilizer Use and Maize Production in Sub-Saharan Africa,” CIMMYT Economics Working Paper 96-01, CIMMYT, Mexico D.F., 1996.
[35] E. T. Nuss and S. A. Tanumihardjo, “Quality Protein Maize for Africa: Closing the Protein Inadequacy Gap in Vulnerable Populations,” Advances in Nutrition, Vol. 2, 2011, pp. 217-222.
[36] S. K. Kumar, “Adoption of Hybrid Maize in Zambia, Effects on Gender Roles, Food Consumption and Nutrition,” IFPRI, Washington DC, 1991.
[37] T. Muzhingi, T. H. Gadaga, H. Siwela, M. A. Grusak, R. M. Russel and G. Tang, “Yellow Maize with High β-Carotene Is an Effective Source of Vitamin A in Healthy Zimbambean Men,” American Journal of Clinical Nutrition, Vol. 94, No. 2, 2011, pp. 510-519. doi:10.3945/ajcn.110.006486
[38] S. Li, A. Nugroho, T. Rocheford and W. S. White, “Vi tamin A Equivalence of the β-Carotene in β-Carotene Biofortified Maize Porridge Consumed by Women,” American Journal of Clinical Nutrition, Vol. 92, No. 5, 2010, pp. 1105-1112. doi:10.3945/ajcn.2010.29802
[39] C. Davis, H. Jing, J. A. Howe, T. Rocheford and S. A. Tanumihardjo, “β-Cryptoxanthin from Supplements or Carotenoid-Enhanced Maize Maintains Liver Vitamin A in Mongolian gerbils (Meriones unguiculatus) Better than or Equal to b-Carotene Supplements,” British Journal of Nutrition, Vol. 100, No. 4, 2008, pp. 786-793. doi:10.1017/S0007114508944123
[40] J. A. Howe and S. A. Tanumihardjo, “Carotenoid-Biofor tified Maize Maintains Adequate Vitamin a Status in Mongolian gerbils,” Nutrition Journal, Vol. 136, No. 10, 2006, pp. 2562-2567.
[41] M. L. Failla, C. Chitchumroonchokchai, D. Siritunga, F. F. De Moura, M. Fregene, M. J. Manary and R. T. Sayre, “Retention during Processing and Bioaccessibility of β Carotene in High β-Carotene Transgenic Cassava Root,” Journal of Agriculture and Food Chemisty, Vol. 60, No. 15, 2012, pp. 3861-3866. doi:10.1021/jf204958w
[42] J. A. Howe, B. Maziya-Dixon and S. A. Tanumihardjo, “Cassava with Enhanced Beta-Carotene Maintains Adequate Vitamin A Status in Mongolian gerbils (Meriones unguiculatus) Despite Substantial cis-Isomer Content,” The British Journal of Nutrition, Vol. 102, No. 3, 2009, pp. 342-349. doi:10.1017/S0007114508184720
[43] L. Wenhong, “Vitamin A Equivalence of the β-Carotene in Biofortified Cassava in Women,” Graduate Theses and Dissertations, Paper 10958, 2009.
[44] M. R. Lafrano, L. R .Woodhouse, D. J. Burnett, B. J. Burri, “Biofortified Cassava Increases β-Carotene and Vitamin A Concentrations in the TAG-Rich Plasma Layer of American Women,” British Journal of Nutrition, First View Article, 2013, pp. 1-11.

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.