Share This Article:

The Effect of Starvation on the Biochemical Composition of the Digestive Gland, the Gonads and the Adductor Muscle of the Scallop Flexopecten glaber

Full-Text HTML Download Download as PDF (Size:471KB) PP. 405-413
DOI: 10.4236/fns.2013.44052    3,227 Downloads   4,852 Views   Citations

ABSTRACT

The effects of the starvation trial on the biochemical composition and the fatty acid dynamics in the triacylglycerol fraction of the digestive gland, gonads and adductor muscle of the scallop Flexopecten glaber were assessed. Results show that three weeks of food deprivation induce depletion of carbohydrates and a significant decrease in proteins and lipids. The noteworthy patterns recorded for the various classes of lipids were the increase of the amount of phosphatidylethanolamine against a strong decline of mono-diacylglycerols, triacylglycerol and phosphatidylserine classes in gonads. These results reflect the ability of Flexopecten glaber to remodel endogenous lipid classes in order to avoid the gonads deterioration. In the starved specimens, severe declines of the n-3 polyunsaturated fatty acid group were recorded in the triacylglycerol fraction of digestive gland and adductor muscle against the increase of this group in gonads. These results confirm the role of triacylglycerol as a polyunsaturated fatty acids reservoir and pointed out to their mobilization from storage organs to the developing gonads during the food shortage trial. Examination of fatty acid data revealed that food deprivation lead Flexopecten glaber to invest in saving and accumulation of highly unsaturated fatty acids in gonads. This applies mainly to the arachidonic acid (20:4n-6) and the docosahexaenoic acid (22:6n-3).

Cite this paper

K. Telahigue, T. Hajji, I. Rabeh and M. Cafsi, "The Effect of Starvation on the Biochemical Composition of the Digestive Gland, the Gonads and the Adductor Muscle of the Scallop Flexopecten glaber," Food and Nutrition Sciences, Vol. 4 No. 4, 2013, pp. 405-413. doi: 10.4236/fns.2013.44052.

References

[1] C. Ruiz, M. Abad, F. Sedano, L. O. Garcia-Martin and J. L. Sanchez-Lopez, “Influence of Seasonal Environmental Changes on the Gamete Production and Biochemical Composition of Crassostreagigas (Thunberg) in Suspended Culture in El Grove, Galicia, Spain,” Journal of Experimental Marine Biology and Ecology, Vol. 155, No. 2, 1992, pp. 249-262. doi:10.1016/0022-0981(92)90066-J
[2] F. Ruano, P. Ramos, M. Quaresma, N. M. Bandarra and I. Pereira Da Fonseca, “Evolution of Fatty Acid Profile and Condition Index in Mollusc Bivalves Submitted to Dif ferent Depuration Periods,” Revista Portuguesa da Ciên cias Veterinárias, Vol. 111, No. 581-582, 2012, pp. 75 84.
[3] C. Berthelin, K. Kellner and M. Mathieu, “Storage Metabolism in the Pacific Oyster (Crassostrea gigas) in relation to Summer Mortalities and Reproductive Cycle (West Coast of France),” Comparative Biochemistry and Physi ology Part B, Vol. 125, No. 3, 2000, pp. 359-369. doi:10.1016/S0305-0491(99)00187-X
[4] C. J. Lodeiros, J. J. Rengel, H. E. Guderley, O. Nusetti and J. H. Himmelman, “Biochemical Composition and Energy Allocation in the Tropical Scallop Lyropecten (Nodipecten) nodosus during the Months Leading up to and Following the Development of Gonads,” Aquaculture, Vol. 199, No. 1-2, 2001, pp. 63-72. doi:10.1016/S0044-8486(01)00505-1
[5] I. Laing and A. R. Child, “Comparative Tolerance of Small Juvenile Palourdes (Tapes decussatus L.) and Manila clams (Tapes philippinarum Adams & Reeve) to Low Temperature,” Journal of Experimental Marine Biology and Ecology, Vol. 195, No. 2, 1996, pp. 267-285. doi:10.1016/0022-0981(95)00097-6
[6] A. Pérez-Camacho, M. Albentosa, M. J. Fernandez-Reiriz and U. Labarta, “Effect of Microalgal and Inert (Corn meal and Cornstarch) Diets on Growth Performance and Biochemical Composition of Ruditapes decussatus Seed,” Aquaculture, Vol. 160, No. 1-2, 1998, pp. 89-102. doi:10.1016/S0044-8486(97)00232-9
[7] J. Epp, V. M. Bricelj and R. E. Malouf, “Seasonal Partitioning and Utilization of Energy Reserves in Two Age Classes of the Bay Scallop Argopecten irradians (La marck),” Journal of Experimental Marine Biology and Ecology,” Vol. 121, No. 2, 1988, pp. 113-136. doi:10.1016/0022-0981(88)90250-X
[8] G. E. Napolitano and R. G. Ackman, “Anatomical Distributions and Temporal Variations of Lipid Classes in Sea Scallops Placopecten magellanicus (Gmelin) from Georges Bank (Nova Scotia),” Comparative Biochemistry and Physiology Part B, Vol. 103, No. 3, 1992, pp. 645-650. doi:10.1016/0305-0491(92)90384-4
[9] G. Le Pennec, M. Le Pennec and P. G. Beninger, “Sea sonal Digestive Gland Dynamics of the Scallop Pectenmaximus in the Bay of Brest (France),” Journal of Marine Biology Association United Kingdom, Vol. 81, No. 4, 2001, pp. 663-671.
[10] A. J. Pazos, J. L. Sanchez, G. Roman, M. L. Pérez-Prallé and M. Abad, “Seasonal Changes in Lipid Classes and Fatty Acid Composition in the Digestive Gland of Pecten maximus,” Comparative Biochemistry and Physiology Part B, Vol. 134, No. 2, 2003, pp. 367-380. doi:10.1016/S1096-4959(02)00286-5
[11] W. Fischer, M. L. Bauchot and M. Schneider, “Méditerranée et Mer Noire (Fishing Area 37). Fiches FAO d’Identification des Espèces pour le Besoin de la Pêche,” Vol. 1-2. FAO, Rome, 1987. http://www.fao.org/docrep/009/x0170f/x0170f00.htm
[12] K. Telahigue, I. Chetoui, I. Rabeh, M. S. Romdhane and M. El Cafsi, “Comparative Fatty Acid Profiles in Edible Parts of Wild Scallops from the Tunisian Coast,” Food Chemistry, Vol. 122, No. 3, 2010, pp. 744-746. doi:10.1016/j.foodchem.2010.03.047
[13] M. Albentosa, M. J. Fernandez-Reiriz, U. Labarta and A. Perez-Camacho, “Response of Two Species of Clams, Ruditapes decussatus and Venerupis pullastra, to Starva tion: Physiological and Biochemical Parameters,” Comparative Biochemistry and Physiology Part B, Vol. 146, No. 2, 2007, pp. 241-249. doi:10.1016/j.cbpb.2006.10.109
[14] J. Folch, M. Lees and G. A. Sloane-Stanley, “A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues,” Journal of Biological Chemistry, Vol. 226, No.1, 1957, pp. 497-509.
[15] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances,” Analytical Chemistry, Vol. 28, No. 3, 1956, pp. 350-356. doi:10.1021/ac60111a017
[16] O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” The Journal of Biological Chemistry, Vol. 193, No. 1, 1951, pp. 265-275.
[17] R. E. Olsen and R. J. Henderson, “The Rapid Analysis of Neutral and Polar Marine Lipids Using Double-Development HPTLC and Scanning Densitometry,” Journal of Experimental Marine Biology and Ecology, Vol. 129, No. 2, 1989, pp. 189-197. doi:10.1016/0022-0981(89)90056-7
[18] G. Cecchi, S. Basini and C. Castano, “Méthanolyse Ra pide des Huiles en Solvant,” Revue Fran?aise des Corps Gras, Vol. 32, No. 4, 1985, pp. 163-164.
[19] H. Pieters, J. H. Klutymans, W. Zurburg and D. I. Zandee, “The In?uence of Seasonal Changes on Energy Metabolism in Mytilus edulus (L.). 1. Growth Rate and Bio chemical Composition in Relation to Environmental Parameters and Spawning,” In: E. Naylor and R. Hartnoll, Eds., Cyclic Phenomena in Marine Plants and Animals, Pergamon Press, Oxford, 1979, pp. 285-292.
[20] X. Q. Su, K. N. Antonas and D. Li, “Comparison of n-3 Polyunsaturated Fatty Acid Contents of Wild and Cultured Australian Abalone,” International Journal of Food Sciences and Nutrition, Vol. 55, No. 2, 2004, pp. 149-154. doi:10.1080/09637480410001666469
[21] T. H. Carefoot, P. Y. Qian, B. E. Taylor, T. West and J. Osborne, “Effect of Starvation on Energy Reserves and Metabolism in the Northern Abalone, Haliotis kamtschatkana,” Aquaculture, Vol. 118, No. 3-4, 1993, pp. 315-325. doi:10.1016/0044-8486(93)90466-C
[22] W. Liu, Q. Li, F. Gao and L. Kong, “Effect of Starvation on Biochemical Composition and Gametogenesis in the Pacific Oyster Crassostrea gigas,” Fisheries Science, Vol. 76, No. 5, 2010, pp. 737-745. doi:10.1007/s12562-010-0274-y
[23] A. C. Giese, “A New Approach to the Biochemical Com position of the Mollusc Body,” Oceanogrraphy and Marine Biology Annual Review, Vol. 7, 1969, pp. 175-229.
[24] J. J. Beukema and W. De Bruin, “Seasonal Changes in Dry Weight and Chemical Composition of the Soft Parts of the Tellinid Bivalve Macoma balthica in the Dutch Wadden Sea,” Netherlands Journal of Sea Research, Vol. 11, No. l, 1977, pp. 42-55. doi:10.1016/0077-7579(77)90020-5
[25] M. Pirini, M. P. Manuzzi, A. Pagliarani, F. Trombetti, A. R. Borgatti and V. Ventrella, “Changes in Fatty Acid Composition of Mytilus galloprovincialis (Lmk) Fed on Microalgal and Wheat Germ Diets,” Comparative Bio chemistry and Physiology Part B, Vol. 147, No. 4, 2007, pp. 616-626. doi:10.1016/j.cbpb.2007.04.003
[26] J. M. Lane, “Allometric and Biochemical Studies on Starved and Unstarved Clams, Rangia cuneata (Sowerby, 1831),” Journal of Experimental Marine Biology and Ecology, Vol. 95, No. 2, 1986, pp.131-143. doi:10.1016/0022-0981(86)90197-8
[27] A. D. Ansell and P. Sivadas, “Some Effects of Temperature and Starvation on the Bivalve Donax virtatus (Da Costa) in Experimental Laboratory Populations,” Journal of Experimental Marine Biology and Ecology, Vol. 13, No. 3, 1973, pp. 229-262. doi:10.1016/0022-0981(73)90069-5
[28] K. C. Stuck, S. A. Watts and S. Y. Wang, “Biochemical Responses during Starvation and Subsequent Recovery in Postlarval Pacific White Shrimp, Penaeus vannamei,” Marine Biology, Vol. 125, No. 1, 1996, pp. 33-45. doi:10.1007/BF00350758
[29] S. Darriba, F. San Juan and A. Guerra, “Energy Storage and Utilization in Relation to the Reproductive Cycle in the Razor Clam Ensisarcuatus (Jefterys 1865),” ICES Journal of Marine Science, Vol. 62, No. 5, 2005, pp. 886-896. doi:10.1016/j.icesjms.2005.02.010
[30] B. J. Barber and N. J. Blake, “Energy Storage and Utili zation in Relation to Gametogenesis in Argopecten irradians concentricus (Say),” Journal of Experimental Marine Biology and Ecology, Vol. 52, No. 2-3, 1981, pp. 121-134. doi:10.1016/0022-0981(81)90031-9
[31] M. Caers, P. Coutteau, P. Sorgeloos and G. Gajardo, “Impact of Algal Diets and Emulsions on the Fatty Acid Composition and Content of Selected Tissues of Adult Broodstock of the Chilean Scallop Argopecten purpuratus (Lamarck, 1819),” Aquaculture, Vol. 217, No. 1-4, 2003, pp. 437-452. doi:10.1016/S0044-8486(02)00144-8
[32] P. Soudant, J. Moal, Y. Marty and J. F. Samain, “Composition of Polar Lipid Classes in Male Gonads of Pectenmaximus (L.). Effect of Nutrition,” Journal of Experimental Marine Biology and Ecology, Vol. 215, No. 1, 1997, pp. 103-114. doi:10.1016/S0022-0981(97)00028-2
[33] N. V. Zhukova, “Lipid Classes and Fatty Acid Composition of the Tropical Nudibranch Mollusks Chromodoris sp. and Phyllidia coelestis,” Lipids, Vol. 42, No. 12, 2007, pp. 1169-1175. doi:10.1007/s11745-007-3123-8
[34] J. R. Pollero, M. E. Re and R. Brenner, “Seasonal Changes of the Lipids of the Mollusc Chlamys tehuelcha,” Com parative Biochemistry and Physiology Part A, Vol. 64, No. 2, 1979, pp. 257-263. doi:10.1016/0300-9629(79)90658-3
[35] I. Y. Ahn, K. W. Cho, K. S. Choi, Y. Seo and J. Shin, “Lipid Content and Composition of the Antarctic La mellibranch, Laternula elliptica (King and Broderip) (Anomalodesmata: Laternulidae), in King George Island during an Austral Summer,” Polar Biology, Vol. 23, No. 1, 2000, pp. 24-33. doi:10.1007/s003000050004
[36] P. Soudant, Y. Marty, J. Moal, R. Robert, C. Quéré, J. R. Le Coz and J. F. Samain, “Effect of Food Fatty Acid and Sterol Quality on Pecten maximus Gonad Composition and Reproduction Process,” Aquaculture, Vol. 143, No. 3-4, 1996, pp. 361-378. doi:10.1016/0044-8486(96)01276-8
[37] L. Freites, M. J. Fernandez-Reiriz and U. Labarta, “Fatty Acid Profiles of Mytilus galloprovincialis (Lamarck) Mussel of Subtidal and Rocky Shore Origin,” Comparative Biochemistry and Physiology Part B, Vol. 132, No. 2, 2002, pp. 453-461. doi:10.1016/S1096-4959(02)00057-X
[38] M. Caers, P. Coutteau and P. Sorgeloos, “Impact of Starvation and of Feeding Algal and Artificial Diets on the Lipid Content and Composition of Juvenile Oysters (Crassostrea gigas) and Clams (Tapes philippinarum),” Marine Biology, Vol. 136, No. 5, 2000, pp. 891-899. doi:10.1007/s002270000295
[39] G. A. Huca, R. J. Pollero and R. R. Brenner, “Digestion and Distribution of Tripalmitoylglycerol in Diplodon delodontus (Mollusca, Bivalvia),” Biological Bulletin, Vol. 167, No. 3, 1984, pp. 698-703. doi:10.2307/1541420
[40] F. Pernet, S. Gauthier-Clerc and E. Mayrand, “Change in Lipid Composition in Eastern Oyster (Crassostrea virginica Gmelin) Exposed to Constant or Fluctuating Temperature Regimes,” Comparative Biochemistry and Physiology Part B, Vol. 147, No. 3, 2007, pp. 557-565. doi:10.1016/j.cbpb.2007.03.009
[41] E. Prato, A. Danieli, M. Maffia and F. Biandolino, “Lipid and Fatty Acid Compositions of Mytilus galloprovincialis Cultured in the Mar Grande of Taranto (Southern Italy): Feeding Strategies and Trophic Relationships,” Zoologi cal Studies, Vol. 49, No. 2, 2010, pp. 211-219.
[42] F. L. E. Chu and J. Greaves, “Metabolism of Palmitic, Linoleic and Linolenic Acids in Adult Oysters, Crassostrea virginica,” Marine Biology, Vol. 110, No. 2, 1991, pp. 229-236. doi:10.1007/BF01313708
[43] B. J. Barber and N. J. Blake, “Reproductive Physiology,” In: S. E. Shumway and G. J. Parsons, Eds., Scallops: Biology, Ecology and Aquaculture, Elsevier, Amsterdam, 2006, pp. 357-416. doi:10.1016/S0167-9309(06)80033-5
[44] F. Delaunay, Y. Marty, J. Moal and J. F. Samain, “The Effect of Monospecific Algal Diets on Growth and Fatty Acid Composition of Pectenmaximus (L.) Larvae,” Journal of Experimental Marine Biology and Ecology, Vol. 173, No. 2, 1993, pp. 163-179. doi:10.1016/0022-0981(93)90051-O
[45] M. A. Hurtado, M. Reza, A. M. Ibarra, M. Wille, P. Sorgeloos, P. Soudant and E. Palacios, “Arachidonic Acid (20:4n-6) Effect on Reproduction, Immunology, and Pro staglandin E2 Levels in Crassostrea corteziensis (Hertlein, 1951),” Aquaculture, Vol. 294, No. 3-4, 2009, pp. 300-305. doi:10.1016/j.aquaculture.2009.06.009

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.