Normalized intervertebral disc MRI signal as a biomarker of pain

Abstract

The drop in the MRI signal intensity, analysed without any normalisation, was found related to the intervertebral disc degeneration, but its association with low back pain remains controversial. The authors developed the analysis of MR signal intensity distribution (AMRSID) method that analyzes the 3D distribution of the normalized T2-weighted MR signal intensity within the intervertebral disc using descriptive statistics of histograms and weighted centers. In this study, we hypothesized that the distribution of the normalized MRI signal intensity within T2- weighted images of the intervertebral disc is a bio-marker of low back pain (LBP) independently of age and disc degenerescence. The aims were to: 1) characterize intervertebral disc degeneration in vertebral fracture from MR T1-weighted and T2-weighted images; 2) evaluate the sensitivity of the normalized MRI signal distribution to the presence of LBP, discs height loss and aging. We prospectively studied 22 patients who underwent an MRI acquisition within 48h after an accidental lumbar vertebral fracture. The presence of prefracture low back pain, spinal stenosis, annular disruption, intervertebral disc height loss was noted from each patient’s medical record. The presence of Modic changes, High-Intensity Zones (HIZs) and vertebral endplate perforations was recorded from MRI. The descriptive statistics of the normalized T2-weighted signal were compared using one-way ANOVAs and a principal component analysis was proposed. MRI, associated to normalisation of the signal intensity and principal component analysis, offers a remarkable potential for in-vivo imaging and analysis of vertebral fractures and adjacent tissues for the patient’s follow-up. The mean normalized MRI signal intensity of the adjacent intervertebral disc to the vertebral fracture was found to be a bio-marker of pain, independently of age and disc degeneration. However, the parameters describing the distribution of the normalized signal intensity were found to be not sensitive to the presence of low back pain, discs height loss and aging. Further studies need to be performed to detect small abnormalities that may explain the presence of LBP.

Share and Cite:

Aissiou, M. , Périé, D. and Mac-Thiong, J. (2013) Normalized intervertebral disc MRI signal as a biomarker of pain. Journal of Biomedical Science and Engineering, 6, 372-380. doi: 10.4236/jbise.2013.63A047.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Osti, O.L., Vernon-Roberts, B., Moore, R. and Fraser, R.D. (1992) Annular tears and disc degeneration in the lumbar spine. A post-mortem study of 135 discs. The Journal of Bone & Joint Surgery (British Volume), 74, 678-682.
[2] Buckwalter, J.A. (1995) Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976), 20, 1307- 1314.
[3] Kerttula, L.I., Serlo, W.S., Tervonen, O.A., Paakko, E.L. and Vanharanta, H.V. (2000) Post-traumatic findings of the spine after earlier vertebral fracture in young patients: Clinical and MRI study. Spine (Phila Pa 1976), 25, 1104- 1108.
[4] Adams, M.A. and Roughley, P.J. (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976), 31, 2151-2161.
[5] Przybyla, A., Pollintine, P., Bedzinski, R. and Adams, M.A. (2006) Outer annulus tears have less effect than endplate fracture on stress distributions inside intervertebral discs: Relevance to disc degeneration. Clinical Bio-mechanics, 21, 1013-1019. doi:10.1016/j.clinbiomech.2006.07.003
[6] Hadjipavlou, A.G., Tzermiadianos, M.N., Bogduk, N. and Zindrick, M.R. (2008) The pathophysiology of disc degeneration: A critical review. The Journal of Bone & Joint Surgery (British Volume), 90, 1261-1270. doi:10.1302/0301-620X.90B10.20910
[7] Modic, M.T., Masaryk, T.J., Ross, J.S. and Carter, J.R. (1988) Imaging of degenerative disk disease. Radiology, 168, 177-186.
[8] Modic, M.T., Steinberg, P.M., Ross, J.S., Masaryk, T.J. and Carter, J.R. (1988) Degenerative disk disease: Assessment of changes in vertebral body marrow with MR imaging. Radiology, 166, 193-199.
[9] Braithwaite, I., White, J., Saifuddin, A., Renton, P. and Taylor, B.A. (1998) Vertebral end-plate (Modic) changes on lumbar spine MRI: Correlation with pain reproduction at lumbar discography. European Spine Journal, 7, 363- 368. doi:10.1007/s005860050091
[10] Vital, J.M., Gille, O., Pointillart, V., Pedram, M., Bacon, P., Razanabola, F., Schaelderle, C. and Azzouz, S. (2003) Course of Modic 1 six months after lumbar posterior osteosynthesis. Spine (Phila Pa 1976), 28, 715-720; discusion 721.
[11] Horton, W.C. and Daftari, T.K. (1992) Which disc as visualized by magnetic resonance imaging is actually a source of pain? A correlation between magnetic resonance imaging and discography. Spine (Phila Pa 1976), 17, S164-S171.
[12] Kornberg, M. (1989) Discography and magnetic resonance imaging in the diagnosis of lumbar disc disruption. Spine (Phila Pa 1976), 14, 1368-1372.
[13] Linson, M.A. and Crowe, C.H. (1990) Comparison of magnetic resonance imaging and lumbar discography in the diagnosis of disc degeneration. Clinical Orthopaedics and Related Research, 160-163.
[14] Osti, O.L. and Fraser, R.D. (1992) MRI and discography of annular tears and intervertebral disc degeneration. A prospective clinical comparison. The Journal of Bone & Joint Surgery (British Volume), 74, 431-435.
[15] Schneiderman, G., Flannigan, B., Kingston, S., Thomas, J., Dillin, W.H. and Watkins, R.G. (1987) Magnetic resonance imaging in the diagnosis of disc degeneration: Correlation with discography. Spine (Phila Pa 1976), 12, 276-281.
[16] Aprill, C. and Bogduk, N. (1992) High-intensity zone: A diagnostic sign of painful lumbar disc on magnetic resonance imaging. The British Journal of Radiology, 65, 361-369. doi:10.1259/0007-1285-65-773-361
[17] Sether, L.A., Yu, S., Haughton, V.M. and Fischer, M.E. (1990) Intervertebral disk: Normal age-related changes in MR signal intensity. Radiology, 177, 385-388.
[18] Yu, S.W., Haughton, V.M., Sether, L.A. and Wagner, M. (1988) Anulus fibrosus in bulging intervertebral disks. Radiology, 169, 761-763.
[19] Schmidt, T.A., An, H.S., Lim, T.H., Nowicki, B.H. and Haughton, V.M. (1998) The stiffness of lumbar spinal motion segments with a high-intensity zone in the anulus fibrosus. Spine (Phila Pa 1976), 23, 2167-2173.
[20] Peng, B., Hou, S., Wu, W., Zhang, C. and Yang, Y. (2006) The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain. European Spine Journal, 15, 583-587. doi:10.1007/s00586-005-0892-8
[21] Hargreaves, B.A., Gold, G.E., Beaulieu, C.F., Vasanawala, S.S., Nishimura, D.G. and Pauly, J.M. (2003) Comparison of new sequences for high-resolution cartilage imaging. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine, 49, 700-709.
[22] Beattie, P.F., Brooks, W.M., Rothstein, J.M., Sibbitt, Jr., W.L., Robergs, R.A., MacLean, T. and Hart, B.L. (1994) Effect of lordosis on the position of the nucleus pulposus in supine subjects. A study using magnetic resonance imaging. Spine (Phila Pa 1976), 19, 2096-2102.
[23] Fennell, A.J., Jones, A.P. and Hukins, D.W. (1996) Migration of the nucleus pulposus within the intervertebral disc during flexion and extension of the spine. Spine (Phila Pa 1976), 21, 2753-2757.
[24] Brault, J.S., Driscoll, D.M., Laakso, L.L., Kappler, R.E., Allin, E.F. and Glonek, T. (1997) Quantification of lumbar intradiscal deformation during flexion and extension, by mathematical analysis of magnetic resonance imaging pixel intensity profiles. Spine (Phila Pa 1976), 22, 2066- 2072.
[25] Perie, D., Sales de Gauzy, J., Curnier, D. and Hobatho, M.C. (2001) Intervertebral disc modeling using a MRI method: Migration of the nucleus zone within scoliotic intervertebral discs. Magnetic Resonance Imaging, 19, 1245-1248. doi:10.1016/S0730-725X(01)00452-0
[26] Perie, D., Curnier, D. and de Gauzy, J.S. (2003) Correlation between nucleus zone migration within scoliotic intervertebral discs and mechanical properties distribution within scoliotic vertebrae. Magnetic Resonance Imaging, 21, 949-953. doi:10.1016/S0730-725X(03)00216-9
[27] Perie, D. and Curnier, D. (2010) Effect of pathology type and severity on the distribution of MRI signal intensities within the degenerated nucleus pulposus: Application to idiopathic scoliosis and spondylolisthesis. BMC Muscu-loskeletal Disorders, 11, 189. doi:10.1186/1471-2474-11-189
[28] Violas, P., Estivalezes, E., Briot, J., Sales de Gauzy, J. and Swider, P. (2007) Quantification of intervertebral disc volume properties below spine fusion, using magnetic resonance imaging, in adolescent idiopathic scolio- sis surgery. Spine (Phila Pa 1976), 32, E405-412.
[29] Gervais, J., Perie, D., Parent, S., Labelle, H. and Aubin, C.E. (2012) MRI signal distribution within the interver- tebral disc as a biomarker of adolescent idiopathic scoliosis and spondylolisthesis. BMC Musculoskeletal Disorders, 13, 239. doi:10.1186/1471-2474-13-239
[30] Kallewaard, J.W., Terheggen, M.A., Groen, G.J., Sluijter, M.E., Derby, R., Kapural, L., Mekhail, N. and van Kleef, M. (2010) Discogenic low back pain. Pain Practice, 10, 560-579. doi:10.1111/j.1533-2500.2010.00408.x
[31] Schellhas, K.P., Pollei, S.R., Gundry, C.R. and Heithoff, K.B. (1996) Lumbar disc high-intensity zone. Correlation of magnetic resonance imaging and discography. Spine (Phila Pa 1976), 21, 79-86.
[32] Ito, M., Incorvaia, K.M., Yu, S.F., Fredrickson, B.E., Yuan, H.A. and Rosenbaum, A.E. (1998) Predictive signs of discogenic lumbar pain on magnetic resonance imaging with discography correlation. Spine (Phila Pa 1976), 23, 1252-1258; discussion 1259-1260.
[33] Lam, K.S., Carlin, D. and Mulholland, R.C. (2000) Lum-bar disc high-intensity zone: The value and significance of provocative discography in the determination of the discogenic pain source. European Spine Journal, 9, 36- 41. doi:10.1007/s005860050006
[34] Rankine, J.J., Gill, K.P., Hutchinson, C.E., Ross, E.R. and Williamson, J.B. (1999) The clinical significance of the high-intensity zone on lumbar spine magnetic resonance imaging. Spine (Phila Pa 1976), 24, 1913-1919; discussion 1920.
[35] Kuisma, M., Karppinen, J., Niinimaki, J., Ojala, R., Haapea, M., Heliovaara, M., Korpelainen, R., Taimela, S., Natri, A. and Tervonen, O. (2007) Modic changes in end-plates of lumbar vertebral bodies: Prevalence and association with low back and sciatic pain among middle-aged male workers. Spine (Phila Pa 1976), 32, 1116- 1122.
[36] Kjaer, P., Leboeuf-Yde, C., Korsholm, L., Sorensen, J.S. and Bendix, T. (2005) Magnetic resonance imaging and low back pain in adults: A diagnostic imaging study of 40-year-old men and women. Spine (Phila Pa 1976), 30, 1173-1180.
[37] Videman, T., Battie, M.C., Gibbons, L.E., Maravilla, K., Manninen, H. and Kaprio, J. (2003) Associations between back pain history and lumbar MRI findings. Spine (Phila Pa 1976), 28, 582-588.
[38] Waris, E., Eskelin, M., Hermunen, H., Kiviluoto, O. and Paajanen, H. (2007) Disc degeneration in low back pain: A 17-year follow-up study using magnetic resonance im- aging. Spine (Phila Pa 1976), 32, 681-684.
[39] Luoma, K., Riihimaki, H., Luukkonen, R., Raininko, R., Viikari-Juntura, E. and Lamminen, A. (2000) Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976), 25, 487-492.
[40] Elfering, A., Semmer, N., Birkhofer, D., Zanetti, M., Hodler, J. and Boos, N. (2002) Risk factors for lumbar disc degeneration: A 5-year prospective MRI study in asymptomatic individuals. Spine (Phila Pa 1976), 27, 125- 134.
[41] Gervais, J., Périé, D. and Aubin, C.E. (2013) Sensitivity of MRI signal distribution within the intervertebral disc to image segmentation and data normalization. Computer Methods in Biomechanics and Biomedical Engineering, in press. doi:10.1080/10255842.2012.748756
[42] Magerl, F., Aebi, M., Gertzbein, S.D., Harms, J. and Nazarian, S. (1994) A comprehensive classification of tho-racic and lumbar injuries. European Spine Journal, 3, 184- 201. doi:10.1007/BF02221591
[43] Pfirrmann, C.W., Metzdorf, A., Zanetti, M., Hodler, J. and Boos, N. (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976), 26, 1873-1878.
[44] Gervais, J., Périé, D., Aubin, C.E., Parent, S. and Labelle, H. (2012) MRI signal distribution within the interverte- bral disk as a descriptive factor of spine deformities. Spine, submitted.
[45] Périé, D. and Curnier, D. (2010) Effect of pathology type and severity on the distribution of MRI signal intensities within the degenerated nucleus pulposus. BMC Muscu-loskeletal Disorders, 11, 189. doi:10.1186/1471-2474-11-189
[46] Oner, F.C., Ramos, L.M., Simmermacher, R.K., Kingma, P.T., Diekerhof, C.H., Dhert, W.J. and Verbout, A.J. (2002) Classification of thoracic and lumbar spine fractures: Problems of reproducibility. A study of 53 patients using CT and MRI. European Spine Journal, 11, 235- 245. doi:10.1007/s00586-001-0364-8
[47] Voormolen, M.H., van Rooij, W.J., van der Graaf, Y., Lohle, P.N., Lampmann, L.E., Juttmann, J.R. and Sluzewski, M. (2006) Bone marrow edema in osteoporotic vertebral compression fractures after percutaneous vertebroplasty and relation with clinical outcome. AJNR American Journal of Neuroradiology, 27, 983-988.
[48] Pollintine, P., Dolan, P., Tobias, J.H. and Adams, M.A. (2004) Intervertebral disc degeneration can lead to “stress- shielding” of the anterior vertebral body: A cause of osteoporotic vertebral fracture? Spine (Phila Pa 1976), 29, 774-782.
[49] Adams, M.A., Pollintine, P., Tobias, J.H., Wakley, G.K. and Dolan, P. (2006) Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thora-columbar spine. Journal of Bone and Mineral Research, 21, 1409-1416. doi:10.1359/jbmr.060609
[50] Heyde, C.E., Tschoeke, S.K., Hellmuth, M., Hostmann, A., Ertel, W. and Oberholzer, A. (2006) Trauma induces apoptosis in human thoracolumbar intervertebral discs. BMC Clinical Pathology, 6, 5. doi:10.1186/1472-6890-6-5
[51] Rahme, R. and Moussa, R. (2008) The modic vertebral endplate and marrow changes: Pathologic significance and relation to low back pain and segmental instability of the lumbar spine. American Journal of Neuroradiology, 29, 838-842. doi:10.3174/ajnr.A0925
[52] Lang, P., Chafetz, N., Genant, H.K. and Morris, J.M. (1990) Lumbar spinal fusion. Assessment of functional stability with magnetic resonance imaging. Spine (Phila Pa 1976), 15, 581-588.
[53] de Roos, A., Kressel, H., Spritzer, C. and Dalinka, M. (1987) MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. American Journal of Roentgenology, 149, 531-534. doi:10.2214/ajr.149.3.531

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.