The Role of CeO2-Doping of Fe2O3/Co3O4 System on Its Structural Characteristics

Abstract

The role of ceria doping (0.75 - 3 mol%) on solid-solid interactions between ferric and cobaltic oxides was investigated. The investigated solids were characterized by TGA, DTA, XRD and HRTEM. The results revealed that ceria much enhanced the formation of nanosized CoFe2O4 (10 - 30 nm). The stimulation effect of ceria towards cobalt ferrite formation was evidenced from analysis of DTA and XRD investigations. In fact, the area of endothermic peak located at 575- 680relative to solid-solid interaction between ferric and cobaltic oxide increased by increasing the dopant concentration. This treatment decreased the activation energy of formation of the produced ferrite from 33 - 9.2 kJ/mol upon doping with 3 mol% CeO2. HRTEM analysis revealed the formation of homogenous nanosized CoFe2O4. The formation effect of ceria dopant towards the formation of CoFe2O4 has been tentatively attributed to an effective increase in the mobility of the reacting cations.

Share and Cite:

N. Hassan, G. Fagal, A. Badawy and G. El-Shobaky, "The Role of CeO2-Doping of Fe2O3/Co3O4 System on Its Structural Characteristics," Open Journal of Applied Sciences, Vol. 3 No. 1, 2013, pp. 92-99. doi: 10.4236/ojapps.2013.31013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. A. El-Shobaky, A. N. Al-Noaimi, A. Abd El-Aal and A. M. Ghozza, “Effect Of Lithium Oxide Doping On Sur Face And Catalytic Properties Of Nio, Fe2O3 Solids,” Materials Letters, Vol. 22, No. 1, 1995, pp. 39-45. doi:10.1016/0167-577X(94)00223-1
[2] G. A. El-Shobaky, F. H. A. Abdalla and A. A. Fouad Zikry, “Effect of Lithium Oxide Doping on Zinc Ferrite Formation,” Thermochimica Acta, Vol. 289, No. 1, 1996, pp. 81-89. doi:10.1016/S0040-6031(96)03028-6
[3] G. A. El-Shobaky, F. H. A. Abdalla and A. M. Ghozza, “Investigation of Solid-Solid Interactions between Pure and Li2O-Doped Cobalt and Ferric Oxides,” Thermochi mica Acta, Vol. 292, No. 1-2, 1997, pp. 123-133. doi:10.1016/S0040-6031(96)03073-0
[4] N. R. E. Radawn and H. G. El-Shobaky, “Solid-Solid Inter actions between Ferric and Cobalt Oxides as Influenced by Al2O3-Doping,” Thermochimica Acta, Vol. 360, No. 2, 2000, pp. 147-156. doi:10.1016/S0040-6031(00)00565-7
[5] M. S. Selim, G. Turky, M. A. Shouman and G. A. El Shobaky, “Effect of Li2O Doping on Electrical Properties of CoFe2O4,” Solid State Ionics, Vol. 120, No. 1-4, 1999, pp. 173-181. doi:10.1016/S0167-2738(99)00008-9
[6] G. A. El-Shobaky, N. R. E. Radawn and F. M. Radwan, “Investigation of Solid-Solid Interactions between Pure and Li2O-Doped Magnesium and Ferric Oxides,” Ther mochimica Acta, Vol. 380, No. 1, 2001, pp. 27-35. doi:10.1016/S0040-6031(01)00632-3
[7] N. A. Deraz and G. A. El-Shobaky, “Solid-Solid Interac tion between Ferric Oxide and Manganese Carbonate as Influenced by Lithium Oxide Doping,” Thermochimica Acta, Vol. 375, No. 1-2, 2001, pp. 137-145. doi:10.1016/S0040-6031(01)00512-3
[8] G. A. El-Shobaky and A. A. Mostafa, “Solid-Solid Inter actions in Fe2O3/MgO System Doped with Aluminium and Zinc Oxides,” Thermochimica Acta, Vol. 408, No. 1 2, 2003, pp. 75-84. doi:10.1016/S0040-6031(03)00323-X
[9] G. A. El-Shobaky and A. A. Ibrahim, “Effects of Li2O Doping on Thermal Solid-Solid Interaction between Ferric Oxide and Nickel Carbonate,” Thermochimica Acta, Vol. 132, 1988, pp. 117-126. doi:10.1016/0040-6031(88)87101-6
[10] G. A. El-Shobaky and A. A. Ibrahim, “Thermal Solid Solid Interaction between Ferric Oxide and Al2O3-Doped Nickel Oxide Solid,” Bulletin de la Société Chimique de France, Vol. 28, No. 1, 1989, pp. 24-29.
[11] G. A. El-Shobaky, A. M. Turky, N. Y. Mostafa and S. K. Mohamed, “Effect of Preparation Conditions on Physicochemical, Surface and Catalytic Properties of Cobalt Ferrite Prepared by Coprecipitation,” Journal of Alloys and Compounds, Vol. 493, No. 1-2, 2010, pp. 415-422. doi:10.1016/j.jallcom.2009.12.115
[12] G. A. Fagal, A. A. Badawy, N. A. Hassan and G. A. El Shobaky, “Effect of La2O3-Treatment on Textural and So lid-Solid Interactions in Ferric/Cobaltic Oxides System,” Journal of Solid State Chemistry, Vol. 194, 2012, pp. 162-167. doi:10.1016/j.jssc.2012.04.032
[13] T. Ogawa, T. Kumagai, T. Suzuki and S. Okuma, “Implementation of Vibration Suppression Control on FWL Processor,” Japan Electricity Engineering, Vol. 128, No. 1, 1999, pp. 45-52.
[14] T. Nomura and A. Nakno, “New Evolution of Ferrite for Multilayer Chip Components,” Proceedings of the 6th International Conference on Ferrites (ICF6), Kyoto, 29 September 1992, pp. 1198-1201.
[15] A. A. Mostafa, G. A. El-Shobaky and E. Girgis, “Effect of ZnO-Doping on Structural and Magnetic Properties of CdFe2O4,” Journal of Physics D: Applied Physics, Vol. 39, No. 10, 2006, pp. 2007-2011. doi:10.1088/0022-3727/39/10/004
[16] Z. X. Tang, C. M. Sorensen and K. J. Klabunde, “Size Dependent Curie Temperature in Nanoscale MnFe2O4 Particles,” Physical Review Letters, Vol. 68, No. 25, 1991, pp. 3602-3605. doi:10.1103/PhysRevLett.67.3602
[17] H. M. Reinl, M. Peller and M. Hagmann, “Ferrite-En hanced MRI Monitoring in Hyperthermia,” Magnetic Resonance Imaging, Vol. 23, No. 10, 2005, pp. 1017-1020. doi:10.1016/j.mri.2005.09.008
[18] R. Hergt, R. Hiergeist and I. Hilger, “Maghemite Nanoparticles with Very High AC-Losses for Application in RF-Magnetic Hyperthermia,” Journal of Magnetism and Magnetic Materials, Vol. 270, No. 3, 2004, pp. 345-357. doi:10.1016/j.jmmm.2003.09.001
[19] G. G. Kenning, R. Rodriguezand V. S. Zotev, “Detection of Magnetically Enhanced Cancer Tumors Using SQUID Magnetometry: A Feasibility Study,” Review of Scientific Instruments, Vol. 76, No. 1, 2005, Article ID: 014303. doi:10.1063/1.1834696
[20] M. D. Shultz, S. Calvin, P. P. Fatouros, S. A. Morrison and E. E. Carpenter, “Enhanced Ferrite Nanoparticles as MRI Contrast Agents,” Journal of Magnetism and Magnetic Materials, Vol. 311, No. 1, 2007, PP. 464-468. doi:10.1016/j.jmmm.2006.10.1188
[21] H. Yang, C. Zhang, X. Shi, H. Hua, X. Du, Y. Fang, Y. Ma, H. Wu and S. Yang, “Water-Soluble Superparamagnetic Manganese Ferrite Nanoparticles for Magnetic Re sonance Imaging,” Biomaterials, Vol. 31, No. 13, 2010, pp. 3667-3673. doi:10.1016/j.biomaterials.2010.01.055
[22] M. Hashim, A. Muddin, S. Kumar, B. H. Koo, S. E. Shirsath, E. M. Mohammed, J. Shahe, R. K. Kotnalae, H. K. Choib, H. Chungf and R. Kumarg, “Structural, Electrical and Magnetic Properties of Co-Cu Ferrite Nanoparticles,” Journal of Alloys and Compounds, Vol. 518, No. 1, 2012, pp. 11-18. doi:10.1016/j.jallcom.2011.12.017
[23] G. A. El-Shobaky, H. M. A. Hassan, N. S. Yehia and A. A. Badawy, “Effect of CeO2 -Doping on Surface and Catalytic Properties of CuO-ZnO System,” Journal of Non Crystalline Solids, Vol. 356, No. 1, 2010, p. 32. doi:10.1016/j.jnoncrysol.2009.09.024
[24] B. D. Cullity, “Publishing Cos,” 2nd Edition, Addison Wesley, Reading, 1978, pp. 102-105.
[25] A. Bueno-Lopez, K. Krishna and M. Makkee, “Oxygen Exchange Mechanism between Isotopic CO2 and Pt/CeO2,” Applied Catalysis A: General, Vol. 342, No. 1-2, 2008, pp. 144-149. doi:10.1016/j.apcata.2008.03.013
[26] L. Jia, M. Shen, J. Hao, T. Rao and J. Wang, “Dynamic Oxygen Storage and Release over Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.3Ox Complex Compounds and Structural Characterization,” Journal of Alloys and Compounds, Vol. 454, No. 1-2, 2008, pp. 321-326. doi:10.1016/j.jallcom.2006.12.040
[27] O. Adamopoulos, E. Bjorkman, Y. Zhang, M. Mamoun, S. B. Ta and M. Lother, “A Nanophase Oxygen Storage Material: Alumina-Coated Metal-Based Ceria,” Journal of the European Ceramic Society, Vol. 29, No. 4, 2009, pp. 677-689. doi:10.1016/j.jeurceramsoc.2008.07.017

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.