Effect of cra gene mutation on the metabolism of Escherichia coli for a mixture of multiple carbon sources

Abstract

The major player for catabolite repression is the phosphotransferase systems (PTSs) and cAMP-Crp. Moreover, Cra controls the carbon flow in the metabolic network. In the present research, the effect of modulating cra gene (Δcra) on the consumption of multiple carbon sources such as glucose and fructose (as well as xylose) was investigated under both aerobic and anaerobic conditions. It was shown that glucose and fructose could be co-metabolized with fructose consumed faster than glucose in cra mutant under both aerobic and anaerobic conditions. It was also implied that cra mutant consumed higher amount of total carbon sources, which contributed to the highest metabolite production as compared to the wild type strain. Thus, cra mutant can be a good candidate for the efficient utilization of multiple carbon sources such as glucose and fructose, where xylose consumption was repressed by catabolite repression. The overall regulation mechanisms were clarified based on fermentation data and gene transcript analysis.

Share and Cite:

Yao, R. , Kurata, H. and Shimizu, K. (2013) Effect of cra gene mutation on the metabolism of Escherichia coli for a mixture of multiple carbon sources. Advances in Bioscience and Biotechnology, 4, 477-486. doi: 10.4236/abb.2013.43A063.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Gorke, B. and Stulke, J. (2008) Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nature Reviews Microbiology, 6, 613-624. doi:10.1038/nrmicro1932
[2] Kim, J.H., Block, D.E. and Mills, D.A. (2010) Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 88, 1077-1085. doi:10.1007/s00253-010-2839-1
[3] Zaldivar, J., Nielsen, J. and Olsson, J. (2011) Fuel ethanol production from lignocellulose: Challenge for metabolic engineering and process integration. Applied Microbiology and Biotechnology, 56, 17-34. doi:10.1007/s002530100624
[4] Bettenbrock, K., Fischer, S., Kremling, A., Jahreis, K. and Sauter, T. (2006) A quantitative approach to catabolite repression in Escherichia coli. The Journal of Bilogical Chemistry, 281, 2578-2584.
[5] Kremling, A. and Gilles, E.D. (2001) The organization of metabolic reaction networks: II. Signal processing in hierarchical structured functional units. Metabolic Engineering, 3, 138-150. doi:10.1006/mben.2000.0175
[6] Kremling, A., Fischer, S., Sauter, T., Bettenbrock, K. and Gilles, E.D. (2004) Time hierarchies in the Escherichia coli carbohydrate uptake and metabolism. Biosystems, 73, 57-71. doi:10.1016/j.biosystems.2003.09.001
[7] Nishio, Y., Usuda, Y., Matsui, K. and Kurata, H. (2008) Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Molecular Systems Biology, 4, 160.
[8] Nichols, N.N., Dien, B.S. and Bothast, R.J. (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Applied Microbiology and Biotechnology, 56, 120-125. doi:10.1007/s002530100628
[9] Hernández-Montalvo, V., Valle, F., Bolivar, F. and Gosset, G. (2001) Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. Applied Microbiology and Biotechnology, 57, 186-191. doi:10.1007/s002530100752
[10] Dien, B.S., Nichols, N.N. and Bothast R.J. (2002) Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid. Journal of Industrial Microbiology and Biotechnology, 29, 221-227. doi:10.1038/sj.jim.7000299
[11] Yamano, L.P., York, S.W., Shanmugam, K.T. and Ingram, L.O. (2009) Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanolproducing Escherichia coli. Biotechnology Letters, 31, 1389-1398. doi:10.1007/s10529-009-0011-8
[12] Flores, N., Flores, S., Escalante, A., de Anda, R., Leal, L., Malpica, R., Georgellis, D., Gosset, G. and Bolívar, F. (2005) Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate: Carbohydrate phosphotransferase system. Metabolic Engineering, 7, 70-87. doi:10.1016/j.ymben.2004.10.002
[13] Moat, A.G., Foster, J.W. and Spector, M.P. (2002) Microbial physiology. 4th Edition, Cold John Wiley & Sons, New York. doi:10.1002/0471223867
[14] Saier Jr., M.H. and Ramseier, T.M. (1996) The catabolite repressor/activator (Cra) protein of enteric bacteria. Journal of Molecular Microbiology and Biotechnology, 178, 3411-3417.
[15] Dessein, A., Schwartz, M. and Ullmann, A. (1978) Catabolite repression in Escherichia coli mutants lacking cyclic AMP. Molecular Genomics and Genetics, 162, 83-87. doi:10.1007/BF00333853
[16] Guidi-Rotani, C., Danchin, A. and Ullmann, A. (1980) Catabolite repression in Escherichia coli mutants lacking cyclic AMP receptor protein. Proceedings of the National Academy of Sciences, 77, 5799-5801. doi:10.1073/pnas.77.10.5799
[17] Perrenoud, A. and Sauer, U. (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. Journal of Bacteriology, 187, 3171-3179. doi:10.1128/JB.187.9.3171-3179.2005
[18] Nachen, A., Schicker, A., Revelles, O. and Sauer, U. (2008) Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli. Journal of Biotechnology, 190, 2323-2330. doi:10.1128/JB.01353-07
[19] Sarkar, D. and Shimizu, K. (2008) Effect of cra gene knockout together with other genes knockouts on the improvement of substrate consumption rate in Escherichia coli under microaerobic condition. Biochemical Engineering Journal, 42, 224-228. doi:10.1016/j.bej.2008.06.019
[20] Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L. and Mori, H. (2006) Construction of Escherichia coli K-12 inframe, single gene knockout mutants: The Keio collection. Molecular Systems Biology, 2, 2006-0008. doi:10.1038/msb4100050
[21] Rahman, M., Hassan, M.R. and Shimizu, K. (2008) Growth phase-dependent changes in the expression of global regulatory genes and associated metabolic pathways in Escherichia coli. Biotechnology Letters, 30, 853-860. doi:10.1007/s10529-007-9621-1
[22] Kabir, M.D. and Shimizu, K. (2003) Gene expression patterns for metabolic pathway in pgi knockout Escherichia coli with and without phb genes based on RT-PCR. Journal of Biotechnology, 105, 11-31. doi:10.1016/S0168-1656(03)00170-6
[23] Sambrook, J. and Russell, D.W. (2001) Molecular cloning: A laboratory manual. 3rd Edition, Cold Spring Harbor Laboratory Press, New York.
[24] Crasnier-Mednansky, M., Park, M.C., Studley, W.K. and Saier Jr., M.H. (1997) Cra-mediated regulation of Esche-richia coli adenylate cyclase. Microbiology, 143, 785-792. doi:10.1099/00221287-143-3-785
[25] Reizer, J., Reizer, A., Kornberg, H.L. and Saier Jr., M.H. (1994) Sequence of the fruB gene of Escherichia coli encoding the diphosphoryl transfer protein (DTP) of the phosphoenolpyruvate: Sugar phosphotransferase system. FEMS Microbiology Letters, 118, 159-162. doi:10.1111/j.1574-6968.1994.tb06819.x
[26] Feldheim, D.A., Chin, A.M., Nierva, C.T., Feucht, B.U., Cao, Y.W., Xu, Y.F., Sutrina, S.L. and Saier Jr., M.H. (1990) Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate: Sugar phosphotransferase system and analysis of fructose (fru) operon expression in Sallmonella typhimurium. Journal of Bacteriology, 172, 5459-5469.
[27] Chin, A.M., Feldheim, D.A. and Saier Jr., M.H. (1989) Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which over-express the fructose regulon. Journal of Bacteriology, 171, 2424-2434.
[28] Kornberg, H.L. (2001) Routes for fructose utilization by Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 3, 355-359.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.