Into the life and death: RecA a WISE factor working to integrate survival and evolution in Escherichia coli

Abstract

Escherichia coli RecA has been considered traditionally a cellular protein with multiple vital functions working to ensure the maintenance of integrity of genome in each individual bacterial cell as well as promoting swarming migration in collectivity. On the contrary, recently it has been described that RecA promotes cellular apoptotic-like death (ALD), a pathway of programmed cellular death (PCD). In fact, RecA has been dubbed as the major apoptotic executor in E. coli. From these studies, RecA emerges as a prototypical Gin/Gan protein that despite of their intrinsic vital and lethal anfi-funcionality becomes in a WISE factor: a Worker to Integrate Survival and Evolution in E. coli evolving populations living in community. Here, I provide a review of recent experimental and conceptual advances trying to understand these RecA’s antagonistic roles in appearance contradictory under a unified biological vision.

Share and Cite:

Gómez, J. (2013) Into the life and death: RecA a WISE factor working to integrate survival and evolution in Escherichia coli. Advances in Bioscience and Biotechnology, 4, 442-449. doi: 10.4236/abb.2013.43A059.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Koonin, E.V. (2012) The logic of change: The nature and origin of biological evolution. FT Press Science.
[2] Hiom, K. (2000) Homologous recombination. Current Biology, 10, R359-R361. doi:10.1016/S0960-9822(00)00500-5
[3] Rocha, E.P.C, Cornet, E. and Michel, B. (2005) Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genetics, 1, e15. doi:10.1371/journal.pgen.0010015
[4] Bianco, P.R., Tracy, R.B. and Kowalczykowski, S.C. (1998) DNA strand exchange proteins: A biochemical and physical comparison. Frontiers in Biosciences, 3, D570-D603.
[5] Galletto, R. and Kowalczykowski, S.C. (2007) RecA. Current Biology, 17, R395-R397. doi:10.1016/j.cub.2007.03.009
[6] Friedberg, E.C., et al., (2006) DNA repair and mutagenesis. ASM Press, Washington DC.
[7] Gomez-Gomez, J.M., Manfredi, C., Alonso, J.C. and Blazquez, J. (2007) A novel role for RecA under non-stress: Promotion of swarming motility in Escherichia coli. BMC Biology, 5, 14. doi:10.1186/1741-7007-5-14
[8] Dwyer, D.J., Camacho, D.M., Kohanski, M.A., Callura, J.M. and Collins, J.J. (2012) Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Molecular Cell, 46, 561-572. doi:10.1016/j.molcel.2012.04.027
[9] West, S.C. (2003) Molecular views of recombination proteins and their control. Nature Reviews of Molecular Cell Biology, 4, 435-445. doi:10.1038/nrm1127
[10] Michael, M.C. (2007) Motoring along with the bacterial RecA protein. Nature Reviews of Molecular Cell Biology, 8, 127-137. doi:10.1038/nrm2099
[11] Storz, G. and Hengge, R. Bacterial stress responses. 2nd Edition, ASM Press, Washington DC.
[12] Patel, M., Jiang, A., Woodgate, R., Cox, M.M. and Goodman, M.F. (2010) A new model for SOS-induced mutagenesis: How RecA protein activates DNA polymerase V. Critical Reviews in Biochemistry and Molecular Biology, 45, 171-184. doi:10.3109/10409238.2010.480968
[13] Lovett, S.T. (2012) A glimpse of molecular competition. Nature, 491, 199-200. doi:10.1038/nature11639
[14] Cox, M.M. (2007) Regulation of bacterial RecA protein function. Critical Reviews in Biochemistry and Molecular Biology, 42, 41-63. doi:10.1080/10409230701260258
[15] Cox, M.M., Goodman, M.F., Kreuzer, K.N., Sherratt D.J., Sandler, S.J. and Marians, K.J. (2000) The importance of repairing stalled replication forks. Nature, 404, 37-41. doi:10.1038/35003501
[16] Blazquez, J. and Gomez-Gomez, J.M. (2008) Evolution of antibiotic resistance by hypermutation. American Society for Microbiology (ASM) Press, Washington DC.
[17] Miller, C., Thomsen, L.E., Gaggero, C., Mosseri, R., Ingmer, H. and Cohen, S.N. (2004) SOS response induction by β-lactams and bacterial defense against antibiotic lethality. Science, 305, 1629-1631. doi:10.1126/science.1101630
[18] Perez-Capilla, T., Baquero, M.R., Gomez-Gomez, J.M., Ionel, A., Martin, S. and Blázquez, J. (2005) SOS-independent induction of dinB transcription by beta-lactammediated inhibition of cell wall synthesis in Escherichia coli. Journal of Bacteriology, 187, 1515-1518. doi:10.1128/JB.187.4.1515-1518.2005
[19] Rosenberg, S.M., Chandan, S.R., Frisch, L. and Hastings, P.J. (2012) Stress-induced mutation via DNA breaks in Escherichia coli: A molecular mechanism with implications for evolution and medicine. Bioessays, 34, 885-892. doi:10.1002/bies.201200050
[20] Schalcter, K., Leslie, K., Wyman, C., Woodgate, R., Cox, M.M. and Goodman, M.F. (2005) DNA polymerase V and RecA, a minimal mutasome. Molecular Cell, 17, 561-572. doi:10.1016/j.molcel.2005.01.006
[21] Schlacher, K. and Goodman, M.F. (2007) Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nature Reviews in Molecular Cell Biology, 8, 587-594. doi:10.1038/nrm2198
[22] Jacobson, M.D., Weil, M. and Raff, M.C. (1997) Programmed cell death in animal development. Cell, 88, 347-354. doi:10.1016/S0092-8674(00)81873-5
[23] Lewin, K. (2000) Programmed death in bacteria. Microbiology and Molecular Biology Reviews, 64, 503-514. doi:10.1128/MMBR.64.3.503-514.2000
[24] Rosenberg, S.M. (2009) Life, death, differentiation, and the multicellularity of bacteria. PLoS Genetics, 5, Article ID: e1000418. doi:10.1371/journal.pgen.1000418
[25] Engelberg-Kulka, H., Amitai, S., Kolodkin-Gal, I. and Hazan, R. (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genetics, 2, Article ID: e135. doi:10.1371/journal.pgen.0020135
[26] Kolodkin-Gal, I., Hazan, R., Gaathon, A., Carmeli, S. and Engelberg-Kulka, H. (2007) Linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science, 318, 652-655. doi:10.1126/science.1147248
[27] Belitsky, M., et al. (2011) The Escherichia coli extracellular death factor EDF induces the endoribonucleolytic activities of the toxins MazF and ChpB. Molecular Cell, 41, 625-635. doi:10.1016/j.molcel.2011.02.023
[28] Erental, A., Sharon, I. and Engelberg-Kulka, H. (2012) Two programmed cell death systems in Escherichia coli: An apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biology, 10, Article ID: e1001281. doi:10.1371/journal.pbio.1001281
[29] Carmona-Gutierrez, D., Kroemer, G. and Madeo F. (2012) When death was young: An ancestral apoptotic network in bacteria. Molecular Cell, 46, 552-554. doi:10.1016/j.molcel.2012.05.032
[30] Berg, H.C. (2004) E. coli in motion. Springer, New York.
[31] Kearns D.B. (2010) A field guide to bacterial swarming motility. Nature Reviews in Microbiology, 8, 634-644. doi:10.1038/nrmicro2405
[32] Copeland, M.F. and Weibel, D.B. (2009) Bacterial swarming: A model system for studying dynamic self-assembly. Soft Matter, 5, 1174-1187. doi:10.1039/b812146j
[33] Storz, G. and Hengge, R. Bacterial stress responses. 2nd Edition, ASM Press, Washington DC.
[34] Burkart, M., Toguchi, A. and Harshey, R.M. (1998) The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proceeding of the National Academy of Sciences USA, 95, 2568-2573. doi:10.1073/pnas.95.5.2568
[35] Girgis, H.S., Liu, Y., Ryu, W.S. and Tavazoie, S. (2007) A Comprehensive genetic characterization of bacterial motility. PLoS Genetics, 3, Article ID: e154. doi:10.1371/journal.pgen.0030154
[36] Inoue, T., Shingaki, R., Hirose, S., Waki, K., Mori, I. and Fukui, K. (2007) Genome-Wide screening of genes required for swarming motility in Escherichia coli K-12. Journal of Bacteriology, 189, 950-957. doi:10.1128/JB.01294-06
[37] Harshey, R.M. and Matsuyama, T. (1994) Dimorphic transition in Escherichia coli and Salmonella typhimurium: Surface-induced differentiation into hyperflagellate swarmer cells. Proceedings of the National Academy of Sciences USA, 91, 8631-8635. doi:10.1073/pnas.91.18.8631
[38] Zorzano, M.-P., Cuevas, M.-T., Hochberg, D. and GómezGómez, J.-M. (2005) Reaction-diffusion model for pattern formation in E. coli swarming colonies with slime. Physical Review E, 71, Article ID: 031908. doi:10.1103/PhysRevE.71.031908
[39] Medina-Ruiz, L., Campoy, S., Latasa, C., Cárdenas, P., Alonso, J.C. and Barbé, J. (2010) Overexpression of the recA gene decreases oral but not intraperitoneal fitness of Salmonella enterica. Infection and Immunity, 78, 32173225. doi:10.1128/IAI.01321-09
[40] Shapiro, J.A. and Dworkin, M. (1997) Bacteria as multicellular organisms. Oxford University Press, New York.
[41] Shapiro, J.A. (1998) Thinking about bacterial populations as multicellular organisms. Annual Review in Microbiology, 52, 81-104. doi:10.1146/annurev.micro.52.1.81
[42] Parsek, M.R. and Greenberg, E.P. (2005) Sociomicrobiology: The connections between quorum sensing and biofilms. Trends in Microbiology, 13, 27-33. doi:10.1016/j.tim.2004.11.007
[43] Schauder, S. and Bassler, B.L. (2001) The languages of bacteria. Genes & Development, 15, 1468-1480. doi:10.1101/gad.899601
[44] Bassler, B.L. and Losick, R. (2006) Bacterially speaking. Cell, 125, 237-246. doi:10.1016/j.cell.2006.04.001
[45] López, D., Vlamakis, H., Losick, R. and Kolter, R. (2009) Paracrine signalling in a bacterium. Genes & Development, 23, 1631-1638. doi:10.1101/gad.1813709
[46] West, S.A., Griffin, A.S., Gardner, A. and Diggle, S.P. (2006) Social evolution theory for microorganisms. Nature Review in Microbiology, 4, 597-607.
[47] Strassmann, J.E. (2000) Evolution: Bacterial cheaters. Nature, 404, 555-556.
[48] Carmona-Fontaine, C. and Joao, B.X. (2012) Altruistic cell death and collective drug resistance. Molecular System Biology, 8, 627. doi:10.1038/msb.2012.60
[49] Joao, B.X. (2011) Social interaction in synthetic and natural microbial communities. Molecular System Biology, 7, 483. doi:10.1038/msb.2011.16
[50] Travisano, M. and Velicer, G.J. (2004) Strategies of microbial cheater control. Trends in Microbiology, 12, 7278. doi:10.1016/j.tim.2003.12.009
[51] West, S.A., Diggle, P.D., Buckling, A., Gardner, A. and Griffin, A.S. (2007) The social lives of microbes. Annual Review of Ecology and Evolution Systematic, 38, 53-77. doi:10.1146/annurev.ecolsys.38.091206.095740
[52] Gomez-Gomez, J.M. (2010) Aging in bacteria, immortality or not a critical review. Current Aging Science, 3, 198218. doi:10.2174/1874609811003030198

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.