Effect of Spacing on Growth, Biomass Yield and Quality of Leucaena (Leucaena leucocephala (Lam.) de Wit.) for Renewable Energy in Thailand

Abstract

The present study was conducted to determine the effect of spacing on the growth, biomass production and wood quality of leucaena in order to be used as a fuel crop. Leucaena was grown in a field experiment at the Suwanvajokkasikit Research Station, Pak Chong,Nakhon Ratchasima,Thailandin 2006-2010. The experiment was arranged in a randomized complete block design with 4 replications. The treatment consisted of six spacings (1 × 0.25, 1 × 0.5, 1 × 1, 1 × 1.5, 2 × 0.5 and 2 × 1 m). The results showed that spacing had a significant effect on plant height, diameter at breast height, the number of coppice stumps and biomass yield. Wider spacings resulted in greater plant height. The widest spacing (2 × 1 m) exhibited the higher stem diameter and sprout number than the narrow spacing. The narrowest spacing of 1 × 0.25 m spacing produced the highest total dry weight of leaf, woody stem and biomass yield. The spacing did not have an influence on the heating value and the content of H, N, S, Mg, Cl and ash. However, some of the chemical compositions show significant different with different spacings such as C, O, P, K and Ca content.

Share and Cite:

Chotchutima, S. , Kangvansaichol, K. , Tudsri, S. and Sripichitt, P. (2013) Effect of Spacing on Growth, Biomass Yield and Quality of Leucaena (Leucaena leucocephala (Lam.) de Wit.) for Renewable Energy in Thailand. Journal of Sustainable Bioenergy Systems, 3, 48-56. doi: 10.4236/jsbs.2013.31006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. F. Kirkels and G. P. J. Verbong, “Biomass Gasification: Still Promising? A 30-year Global Overview,” Renewable and Sustainable Energy Reviews, Vol. 15, No. 1, 2011, pp. 471-481. doi:10.1016/j.rser.2010.09.046
[2] M. Barz and M. K. Delivand, “Agricultural Residues as Promising Biofuels for Biomass Power Generation in Thailand,” Journal of Sustainable Energy & Environment, Special Issue, 2011, pp. 21-27.
[3] B. Sajjakulnukit and P. Verapong, “Sustainable Biomass Production for Energy in Thailand,” Biomass and Bioenergy, Vol. 25, No. 5, 2003, pp. 557-570. doi:10.1016/S0961-9534(03)00091-6
[4] H. Abe, A. Katayama, B. P. Sah, T. Toriu, S. Samy, P. Pheach, M. A. Adams and P. F. Grierson, “Potential for Rural Electrification Based on Biomass Gasification in Cambodia,” Biomass and Bioenergy, Vol. 31, No. 9, 2007, pp. 656-664. doi:10.1016/j.biombioe.2007.06.023
[5] S. K. Tewari, R. S. Katiyar, B. Ram and P. N. Misra, “Effect of Age and Season of Harvesting on the Growth, Coppicing Characteristics and Biomass Productivity of Leucaena leucocephala and Vitex negundo,” Biomass and Bioenergy, Vol. 26, No. 3, 2004, pp. 229-234. doi:10.1016/S0961-9534(03)00118-1
[6] K. Rengsirikul, A. Kanjanakuha, Y. Ishii, K. Kangvansaichl, P. Sripichitt, V. Punsuvon, P. Vaithanomsat, G. Nakamanee and S. Tudsri, “Potential Forage and Biomass Production of Newly Introduced Varieties of Leucaena Leucaena leucocephala (Lam.) de Wit.) in Thailand,” Grassland Science, Vol. 57, No. 2, 2011, pp. 94-100. doi:10.1111/j.1744-697X.2011.00213.x
[7] H. M. Shelton, C. M. Piggin and J. L. Brewbaker, “Leucaena-Opportunities and Limitations,” Proceedings of ACIAR, No. 57, 1995, pp. 16-23.
[8] R. J. Van den Beldt, “Effect of Spacing on Growth of Leucaena,” Proceedings of Leucaena Research in the AsianPacific Region, International Development Research Centre, Ottawa, 1983, pp. 103-108.
[9] A. B. Guevarra, A. S. Whitney and J. R. Thompson, “Influence of Intra-Row Spacing and Cutting Regimes on the Growth and Yield of Leucaena,” Agronomy Journal, Vol. 70, No. 6, 1978, pp. 1033-1037. doi:10.2134/agronj1978.00021962007000060034x
[10] J. V. N. S. Prasad, G. R. Korwar, K. V. Rao, U. K. Mandal, G. R. Rao, I. Srinivas, B. Venkateswarlu, S. N. Rao and H. D. Kulkarni, “Optimum Stand Density of Leucaena leucocephala for Wood Production in Andhra Pradesh, Southern India,” Biomass and Bioenergy, Vol. 35, No. 1, 2011, pp. 227-235. doi:10.1016/j.biombioe.2010.08.012
[11] K. W. Ragland, D. J. Aerts and A. J. Baker, “Properties of Wood for Combustion Analysis,” Bioresource Technology, Vol. 37, No. 2, 1991, pp. 161-168.
[12] C. Telmo, J. Lousada and N. Moreira, “Proximate Analysis, Backwards Stepwise Regression between Gross Calorific Value, Ultimate and Chemical Analysis of Wood,” Bioresource Technology, Vol. 101, No. 11, 2010, pp. 3808-3815. doi:10.1016/j.biortech.2010.01.021
[13] Association of Official Analytical Chemists Inc., “Official Methods of Analysis of the Association of Official Analytical Chemists,” Association of Official Analytical Chemists Inc., Virginia, 1990.
[14] S. C. Verma and P. N. Misra, “Biomass and Energy Production in Coppice Stands of Vitex negundo L. in High Density Plantations on Marginal Lands,” Biomass, Vol. 19, No. 3, 1989, pp. 189-194. doi:10.1016/0144-4565(89)90092-9
[15] V. Arjhan, N. Kongkrapee, K. Rubsombut, P. Channaroke and T. Hin-Sui, “Study of a Small Scale Biomass Power Plant for Rural Communities,” Proceeding of the Demonstration Small Scale Biomass Power Plant for Rural Communities, National Research Council of Thailand, Nakhon Ratchasima, 2007, pp. 103-163.
[16] A. Bernando, L. Maria Reis, G. F. Geraldo Reis, G. R. Harrison and B. J. Deuseles Firme, “Effect of Spacing on Growth and Biomass Distribution in Eucalyptus camaldulensis, E. pellita, E. europhylla Plantations in Southeastern Brazil,” Forest Ecology and Management, Vol. 104, No. 1-3, 1998, pp. 1-13.
[17] A. Armstrong, C. Johns and I. Tubby, “Effects of Spacing and Cutting Cycle on the Yield of Poplar Grown as an Energy Crop,” Biomass and Bioenergy, Vol. 17, No. 4, 1999, pp. 305-314. doi:10.1016/S0961-9534(99)00054-9
[18] M. Proe, J. Craig and J. Griffiths, “Effects of Spacing, Species and Coppicing on Leaf Area, Light Interception and Photosynthesis in Short Rotation Forestry,” Biomass and Bioenergy, Vol. 23, No. 5, 2002, pp. 315-326. doi:10.1016/S0961-9534(02)00060-0
[19] C. P. Mitchell, “New Cultural Treatments and Yield Optimization,” Biomass and Bioenergy, Vol. 9, No. 1-5, 1995, pp. 11-34.
[20] G. N. Gathaara, E. L. Glumac and P. Felker, “Three-Year Growth Studies of Leucaena leucocephala (1094) and L. pulverulenta (1001) at Two Spacings in Texas,” Forest Ecology and Management, Vol. 40, No. 3-4, 1991, pp. 189-198.
[21] S. V. Vassilev, D. Baxter, L. K. Andersen and C. G. Vassileva, “An Overview of the Chemical Composition of Biomass,” Fuel, Vol. 89, No. 5, 2010, pp. 913-933. doi:10.1016/j.fuel.2009.10.022
[22] I. Obernberger and G. Thek, “Physical Characterization and Chemical Composition of Densilfied Biomass Fuels with Regard to Their Combustion Behavior,” Biomass and Bioenergy, Vol. 27, No. 6, 2004, pp. 653-669. doi:10.1016/j.biombioe.2003.07.006
[23] B. M. Jenkins, L. L. Baxter, T. R. Miles Jr. and T. R. Miles, “Combustion Properties of Biomass,” Fuel Processing Technology, Vol. 54, No. 1-3, 1998, pp. 17-46.
[24] I. Obernberger, T. Brunner and G. B?rnthaler, “Chemical Properties of Solid Biofuels Significance and Impact,” Biomass and Bioenergy, Vol, 30, No. 11, 2006, pp. 973-982. doi:10.1016/j.biombioe.2006.06.011
[25] P. McKendry, “Energy Production from Biomass (Part 3): Gasification Technologies,” Bioresource Technology, Vol. 83, No. 1, 2002, pp. 55-63. doi:10.1016/S0960-8524(01)00120-1
[26] A. K. Rajvanshi and M. S. Joshi, “Development and Operational Experience with Topless Wood Gasifier Running a 3.75 kW Diesel Engine Pumpset,” Biomass, Vol. 19, No. 1-2, 1989, pp. 47-56. doi:10.1016/0144-4565(89)90005-X
[27] I. Lewandowski and A. Kicherer, “Combustion Quality of Biomass: Practical Relevance and Experiments to Modify the Biomass Quality of Miscanthus x giganteus,” European Journal of Agronomy, Vol. 6, No. 3-4, 1997, pp. 163-177.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.