Size Distributions of Atmospheric Aerosol Compositions in Saitama, Japan

Abstract

A survey of atmospheric aerosols in a suburban area near Tokyo, Japanwas conducted using an Andersen sampler. Significant amounts of Na+and Cl- collected were considered to be derived from sea salt. The difference between the Na+/Cl-ratio in the area and that in sea salt indicated a considerable loss of Cl-. This is assumed to be caused by the formation of NaNO3, which is one of the main nitrate species present. Most of the sulfate in the sample was found to be (NH4)2SO4 in the form of fine particles, which is different from the sulfate derived from sea salt and soil. The size distributions of K and Mg are also discussed in relation to particular sources.

Share and Cite:

I. Paw-Armart and K. Yoshizumi, "Size Distributions of Atmospheric Aerosol Compositions in Saitama, Japan," Open Journal of Air Pollution, Vol. 2 No. 1, 2013, pp. 1-6. doi: 10.4236/ojap.2013.21001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. A. Belis, F. Karagulian, B. R. Larsen and P. K. Hopke, “Critical Review and Meta-Analysis of Ambient Particulate Matter Source Apportionment Using Receptor Models in Europe,” Atmospheric Environment, Vol. 69, 2013, pp. 94-108. doi:10.1016/j.atmosenv.2012.11.009
[2] E. Cuccia, D. Massabò and V. Ariola, “Size-Resolved Comprehensive Characterization of Airborne Particulate Matter,” Atmospheric Environment, Vol. 67, 2013, pp. 14-26. doi:10.1016/j.atmosenv.2012.10.045
[3] A. Pietrodangelo, R. Salzano, E. Rantica and C. Perrino, “Characterisation of the Local Topsoil Contribution to Airborne Particulate Matter in the Area of Rome (Italy),” Source Profiles,” Atmospheric Environment, Vol. 69, 2013, pp. 1-14. doi:10.1016/j.atmosenv.2012.11.059
[4] G. Xiu, D. Zhang, J. Chen and X. Huang, “Characterization of Major Water-Soluble Inorganic Ions in Size-Fractionated Particulate Matters in Shanghai Campus Ambient Air,” Atmospheric Environment, Vol. 38, No. 2, 2004, pp. 227-236. doi:10.1016/j.atmosenv.2003.09.053
[5] G. Sarwar, K. Fahey, R. Kwok and R. C. Gilliam, “Potential Impacts of two SO2 Oxidation Pathways on Regional Sulfate Concentrations-Aqueous-phase Oxidation by NO2 and Gas-phase Oxidation by Stabilized Criegee Intermediates,” Atmospheric Environment, Vol. 68, 2013, pp. 186-197. doi:10.1016/j.atmosenv.2012.11.036
[6] A. C. Rohr and R. E. Wyzga, “Attributing Health Effects to Individual Particulate Matter Constituents,” Atmospheric Environment, Vol. 62, 2012, pp. 130-152. doi:10.1016/j.atmosenv.2012.07.036
[7] B. Brunekreef and B. Forsberg, “Epidemiological Evidence of Effects of Coarse Airborne Particles on Health,” European Respiratory Journal, Vol. 26, No. 2, 2005, pp. 309-318. doi:10.1183/09031936.05.00001805
[8] R. J. Delfino, C. Sioutas and S. Malik, “Potential Role of Ultrafine Particles in Associations between Airborne Particle Mass and Cardiovascular Health,” Environmental Health Perspectives, Vol. 113, No. 8, 2005, pp. 934-946. doi:10.1289/ehp.7938
[9] K. Yoshizumi, Y. Ishibashi, H. Garivait and M. S. Tabucanon, “Size Distributions and Chemical Composition of Atmospheric Aerosols in a Suburb of Bangkok, Thailand,” Environmental Technology, Vol. 17, No. 7, 1996, pp. 777-782. doi:10.1080/09593331708616445
[10] K. Yoshizumi and K. Asakuno, “Characterization of Atmospheric Aerosols in Chichi of the Ogasawara (Bonin) Islands,” Atmospheric Environment, Vol. 20, No. 1, 1986, pp. 151-155. doi:10.1016/0004-6981(86)90216-7
[11] R. C. Robbins, R. D. Cadle and D. L. Eckhardt, “The Conversion of Sodium Chloride to Hydrogen Chloride in the Atmosphere,” Journal of Meteorology, Vol. 16, No. 1, 1959, pp. 53-56. doi:10.1175/1520-0469(1959)016<0053:TCOSCT>2.0.CO;2
[12] R. A. Kotchenruther, “A Regional Assessment of Marine Vessel PM2.5Impacts in the U.S. Pacific Northwest Using a Receptor-based Source Apportionment Method,” Atmospheric Environment, Vol. 68, 2013, pp. 103-111. doi:10.1016/j.atmosenv.2012.11.067
[13] M.-C. Cheng, C.-F. You, J. Cao and Z. Jin, “Spatial and Seasonal Variability of Water-soluble Ions in PM2.5 Aerosols in 14 Major Cities in China,” Atmospheric Environment, Vol. 60, 2012, pp. 182-192. doi:10.1016/j.atmosenv.2012.06.037
[14] M. A. Revuelta, R. M. Harrison, L. Núnez, F. J. Gomez- Moreno, M. Pujadas and B. Artínano, “Comparison of Temporal Features of Sulphate and Nitrate at Urban and Rural Sites in Spain and the UK,” Atmospheric Environment, Vol. 60, 2012, pp. 383-391. doi:10.1016/j.atmosenv.2012.07.004
[15] M. F. D. Gianini, R. Gehrig, A. Fischer, A. Ulrich, A. Wichser and C. Hueglin, “Chemical Composition of PM10 in Switzerland—An Analysis for 2008/2009 and Changes since 1998/1999,” Atmospheric Environment, Vol. 54, 2012, pp. 97-106. doi:10.1016/j.atmosenv.2012.02.037
[16] D. E. Millstein, R. A. Harley and S. V. Hering, “Weekly Cycles in Fine Particulate Nitrate,” Atmospheric Environment, Vol. 42, No. 4, 2008, pp. 632-641. doi:10.1016/j.atmosenv.2007.10.010
[17] K. Anlauf, S.-M. Li, R. Leaitch and J. Brook, “Ionic Composition and Size Characteristics of Particles in the Lower Fraser Valley- Pacific 2001 Field Study,” Atmospheric Environment, Vol. 40, 2006, pp. 2662-2675. doi:10.1016/j.atmosenv.2005.12.027
[18] M. I. Khoder and S. K. Hassan, “Weekday/Weekend Differences in Ambient Aerosol Level and Chemical Characteristics of Water-soluble Components in the City Centre,” Atmospheric Environment, Vol. 42, No. 32, 2008, pp. 7483-7493. doi:10.1016/j.atmosenv.2008.05.068
[19] T. A. Pakkanen, K. Loukkola, C. H. Korhonen and M. Aurela, “Sources and Chemical Composition of Atmospheric Fine and Coarse Particles in the Helsinki Area,” Atmospheric Environment, Vol. 35, No. 32, 2001, pp. 5381-5391. doi:10.1016/S1352-2310(01)00307-7
[20] S. K. Pandey, B. D. Tripathi, V. K. Mishra and S. K. Prajapati, “Size Fractionated Speciation of Nitrate and Sulfate Aerosols in a Sub-tropical Industrial Environment,” Chemosphere, Vol. 63, No. 1, 2006, pp. 49-57. doi:10.1016/j.chemosphere.2005.07.035
[21] Z. Shen, J. Cao, R. Arimoto, Z. Han, R. Zhang, Y. Han, S. Liu, T. Okuda, S. Nakaoand S. Tanaka, “Ionic Composition of TSP and PM2.5 during Dust Storms and Air Pollution Episodes at Xi’an, China,” Atmospheric Environment, Vol. 43, No. 18, 2009, pp. 2911-2918. doi:10.1016/j.atmosenv.2009.03.005
[22] F. Reisen, C. P. Meyer and M. D. Keywood, “Impact of Biomass Burning Sources on Seasonal Aerosol Air Quality,” Atmospheric Environment, Vol. 67, 2013, pp. 437- 447. doi:10.1016/j.atmosenv.2012.11.004
[23] S. Pateraki, T. Maggos, J. Michopoulos, H. A. Flocas, D. N. Asimakopoulos and C. Vasilakos, “Ions Species Size Distribution in Particulate Matter Associated with VOCs and Meteorological Conditions over an Urban Region,” Chemosphere, Vol. 72, No. 3, 2008, pp. 496-503. doi:10.1016/j.chemosphere.2008.02.061

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.