Share This Article:

Near Infrared Fluorescence Enhancement by Local Surface Plasmon Resonance from Arrayed Gold Nanoblocks

Full-Text HTML XML Download Download as PDF (Size:544KB) PP. 27-31
DOI: 10.4236/opj.2013.31005    3,720 Downloads   6,568 Views   Citations

ABSTRACT

The near infrared (NIR) fluorescence enhancement by local surface plasmon resonanoce from arrayed gold (Au) nanoblocks was investigated by NIR fluorescent dyes, IR780, immobilized in hydrophobic DNA thin film on glass substrates, to clarify the gap mode effect on the fluorescence enhancement. In the substrate with Dimer type Au nanoblock arrangement, average total fluorescence intensity was larger by 10.0, 2.4, and 12.4 times for non-polarized, P- and S- polarization as compared with that on a glass substrate alone, respectively. These findings suggested that enhancement of excitation light intensity at nanogap in the Dimer type Au nanoblock arrangement affected the fluorescence intensity. Average total fluorescence intensity, on the other hand, was smaller by 0.63 times as compared with that on a glass substrate alone in the checkerboard type Au array. It is suggested that the fluorescence quenching was caused by the energy transfer from the excited state of IR780 to Au nanoblocks or by the increased deactivation of excited dye molecules induced by resonance with Au nanoblocks at the checkerboard arrangement. We have firstly achieved the NIR fluorescence enhancement by LSPR due to the gap mode.

Cite this paper

F. Ito, R. Ohta, Y. Yokota, K. Ueno, H. Misawa and T. Nagamura, "Near Infrared Fluorescence Enhancement by Local Surface Plasmon Resonance from Arrayed Gold Nanoblocks," Optics and Photonics Journal, Vol. 3 No. 1, 2013, pp. 27-31. doi: 10.4236/opj.2013.31005.

References

[1] S. Y. Gao, K. Ueno and H. Misawa, “Plasmonic Antenna Effects on Photochemical Reactions,” Accounts of Che mical Research, Vol. 44, No. 4, 2011, pp. 251-260. doi:10.1021/ar100117w
[2] A. Furube, L. Du, K. Hara, R. Katoh and M. Tachiya, “Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles,” Journal of the American Chemical Society, Vol. 129, No. 48, 2007, pp. 14852-14853. doi:10.1021/ja076134v
[3] Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles,” Journal of the American Chemical Society, Vol. 127, No. 20, 2005, pp. 7632-7637. doi:10.1021/ja042192u
[4] H. Nishi, T. Asahi and S. Kobatake, “Enhanced One Photon Cycloreversion Reaction of Diarylethenes near Individual Gold Nanoparticles,” Journal of Physical Chemistry C, Vol. 115, No. 11, 2011, pp. 4564-4570. doi:10.1021/jp111807k
[5] Y. Tsuboi, R. Shimizu, T. Shoji and N. Kitamura, “Near Infrared Continuous-Wave Light Driving a Two-Photon Photochromic Reaction with the Assistance of Localized Surface Plasmon,” Journal of the American Chemical Society, Vol. 131, No. 35, 2009, pp. 12623-12627. doi:10.1021/ja9016655
[6] S. Haruta, H. Misawa, K. Ueno, Y. Yokota, H. Uehara, H. Hiratsuka, H. Horiuchi and T. Okutsu, “Protein Crystallization Induced by Strong Photons-Molecules Coupling Fields Photochemical Reaction,” Journal of Photochemistry and Photobiology A—Chemistry, Vol. 221, No. 2-3, 2011, pp. 268-272. doi:10.1016/j.jphotochem.2011.03.012
[7] J. R. Lakowicz, “Radiative Decay Engineering: Biophysi cal and Biomedical Applications,” Analytical Biochemistry, Vol. 298, No. 1, 2001, pp. 1-24. doi:10.1006/abio.2001.5377
[8] L. A. Cassis and R. A. Lodder, “Near-IR Imaging of Atheromas in Living Arterial Tissue,” Analytical Chemistry, Vol. 65, No. 9, 1993, pp. 1247-1256. doi:10.1021/ac00057a023
[9] B. Valeur, “Molecular Fluorescence: Principles and Ap plications,” Wiley-VCH Ltd., London, 2001.
[10] T. Kakiuchi, F. Ito and T. Nagamura, “Time-Resolved Studies of Energy Transfer from Meso-tetrakis(N methylpyridinium-4-yl)porphyrin to 3,3'-diethyl-2,2'-thia tricarbocya nine iodide along Deoxyribonucleic Acid Chain,” Journal of Physical Chemistry B, Vol. 112, No. 13, 1993, pp. 3931-3937. doi:10.1021/jp7107347
[11] T. Nagamura, M. Yamamoto, M. Terasawa and K. Shiratori, “High Performance Sensing of Nitrogen Oxides by Surface Plasmon Resonance Excited Fluorescence of Dye-Doped Deoxyribonucleic Acid Thin Films,” Applied Physics Letters, Vol. 83, No. 4, 2003, pp. 803-805. doi:10.1063/1.1595722
[12] F. Tam, G. P. Goodrich, B. R. Johnson and N. J. Halas, “Plasmonic Enhancement of Molecular Fluorescence,” Nano Letters, Vol. 7, No. 2, 2007, pp. 496-501. doi:10.1021/nl062901x
[13] N. Horimoto, K. Imura and H. Okamoto, “Dye Fluorescence Enhancement and Quenching by Gold Nanoparticles: Direct Near-Field Microscopic Observation of Shape Dependence,” Chemical Physics Letters, Vol. 467, No. 1-3, 2008, pp. 105-109. doi:10.1016/j.cplett.2008.10.067
[14] K. Sugawa, T. Kawahara, T. Akiyama, M. Kobayashi, A. Takahara and S. Yamada, “Enhanced Absorption and Emission in a Copper Phthalocyanine-Gold Nanoparticle System Assisted by Localized Surface Plasmon,” Chemistry Letters, Vol. 38, No. 4, 2009, pp. 326-327. doi:10.1246/cl.2009.326
[15] G. Laurent and T. Asahi, “Enhancement of Excimer Fluorescence from Thin Dye Film by Single Gold Nanoparticles,” Chemistry Letters, Vol. 38, No. 4, 2009, pp. 332 333. doi:10.1246/cl.2009.332
[16] F. Ito, R. Ohta, Y. Yokota, K. Ueno, H. Misawa and T. Nagamura, “Near-Infrared Fluorescence Enhancement by Regularly Arranged Gold Nanoblocks,” Chemistry Letters, Vol. 39, No. 11, 2009, pp. 1218-1219. doi:10.1246/cl.2010.1218
[17] F. Ito, R. Ohta, Y. Yokota, K. Ueno, H. Misawa and T. Nagamura, “Polarization Dependence for Enhancement of Near-Infrared Fluorescence Intensity by Local Surface Plasmon Resonance from Arranged Gold Nanoblocks,” Molecular Crystals and Liquid Crystals, Vol. 538, 2011, pp. 1218-1219. doi:10.1080/15421406.2011.564085
[18] K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki and H. Misawa, “Optical Properties of Nanoengineered Gold Blocks,” Optics Letters, Vol. 30, No. 16, 2005, pp. 265-271. doi:10.1364/ol.30.002158
[19] K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki and H. Misawa, “Nanoparticle Plasmon-Assisted Two-Photon Polymerization Induced by Incoherent Excitation Source,” Journal of the American Chemical Society, Vol. 130, No. 22, 2008, pp. 6928-6929. doi:10.1021/ja801262r
[20] K. Tanaka and Y. Okahata, “A DNA-Lipid Complex in Organic Media and Formation of an Aligned Cast Film,” Journal of the American Chemical Society, Vol. 118, No. 44, 1996, pp. 10679-10683. doi:10.1021/ja9617855
[21] Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi and N. Ogata, “Light Amplification in Dye-Doped DNA-Surfactant Complex Films,” Proceedings of SPIE, Vol. 4106, 2000, pp. 369-376. doi:10.1117/12.408526
[22] K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki and H. Misawa, “Clusters of Closely Spaced Gold Nanoparticles as a Source of Two-Photon Photoluminescence at Visible Wavelengths,” Advanced Materials, Vol. 20, No. 1, 2008, pp. 26-30. doi:10.1002/adma.200602680
[23] A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar and J. Feldmann, “Fluorescence Enhancement in Hot Spots of AFM-Designed Gold Nanoparticle Sandwiches,” Nano Letters, Vol. 8, No. 2, 2008, pp. 485-490. doi:10.1021/nl072602n

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.