Autophagic cell death: A new frontier in cancer research

Abstract

Autophagy is a conserved and tightly regulated cellular catabolic process that involves the lysosomal degradation pathway. Intracellular recycling of macromolecules and organelles provided by autophagy is an integral part of normal cellular function and permits cells survival under starvation conditions, maintaining cell growth and the homeostasis of organisms. In addition to its normal role in cell physiology, auto- phagy is closely linked to both tumorigenesis and cancer cell response to treatments. In fact, anticancer drugs can induce autophagy but it remains contro- versial whether this process leads to cancer cell death or protects cancer cells from cellular stress. The role of autophagy in cancer is complex and is likely dependent on tumor type, stage, and genetic context. However, recent evidences demonstrate a tight interconnection of autophagy with several cell death pathways and reveal an active contribution of auto- phagy to cell death. When autophagy is directly in- volved in the death process, the cell death process is designated “autophagic cell death” (ACD). In this review, we will give a comprehensive overview of the autophagic signaling pathway, its role and regulation in cancer cells; moreover, we will try to define the molecular mechanisms at the basis of the autophagic cell death showing that PPAR-γ activation plays a role in the induction of autophagy in cancer cells.

Share and Cite:

Zappavigna, S. , Luce, A. , Vitale, G. , Merola, N. , Facchini, S. and Caraglia, M. (2013) Autophagic cell death: A new frontier in cancer research. Advances in Bioscience and Biotechnology, 4, 250-262. doi: 10.4236/abb.2013.42034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Clarke, P.G. and Clarke, S. (1996). Nineteenth century research on naturally occurring cell death and related phenomena. Anatomy and Embryology (Berl), 193, 8199. doi:10.1007/BF00214700
[2] Kerr, J.F., Wyllie, A.H. and Curie, A.R. (1972) Apoptosis:a basic biological phenomenon with wide ranging implications in tissue kinetics. British Journal of Cancer, 26, 239-257. doi:10.1038/bjc.1972.33
[3] Lockshin, R.A. and Zakery, Z. (1991) Programmed cell death and apoptosis. In: Tomei, L.D. and Cope, F.O., Eds., Apoptosis: The Molecular Basis of Cell Death, Cold Spring Harbor Laboratory Press, New York, 47-60.
[4] Thompson, C.B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science, 267, 1456-1462. doi:10.1126/science.7878464
[5] Schweiichel, J.-U. and Merker, H.-J. (1973) The morphology of various types of cell death in prenatal tissues. Teratology, 7, 253-266. doi:10.1002/tera.1420070306
[6] Moreira, M.E. and Barcinski, M.A. (2004) Apoptotic cell and phagocyte interplay: Recognition and consequences in different cell systems. Anais da Academia Brasileira Ciencias, 76, 93-115. doi:10.1590/S0001-37652004000100009
[7] Kanazawa, T., Taneike, I., Akaishi, R., Yoshizawa, F., Furuya, N., Fujimura, S. and Kadowaki, M. (2003) Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mtor in isolated rat hepatocytes. Journal of Biological Chemistry, 279, 8452-8459. doi:10.1074/jbc.M306337200
[8] Wang, C.W. and Klionsky, D.J. (2003) The molecular mechanism of autophagy. Molecular Medicine, 9, 65-76.
[9] Bergamini, E., Cavallini, G., Donati, A. and Gori, Z. (2003) The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomedicine & Pharmacotherapy, 57, 203-208. doi:10.1016/S0753-3322(03)00048-9
[10] Meijer, A.J. and Codogno, P. (2004) Regulation and role of autophagy in mammalian cells. International Journal of Biochemistry & Cell Biology, 36, 2445-2462. doi:10.1016/j.biocel.2004.02.002
[11] Mizushima, N. (2004) Methods for monitoring autophagy. International Journal of Biochemistry & Cell Biology, 36, 2491-2502. doi:10.1016/j.biocel.2004.02.005
[12] Klionsky, D.J. (2005) The molecular machinery of autophagy: Unanswered questions. Journal of Cell Science, 118, 7-18. doi:10.1242/jcs.01620
[13] Ohsumi, Y. and Mizushima, N. (2004) Two ubiquitin-like conjugation systems essential for autophagy. Seminars in Cell & Developmental Biology, 15, 231-236. doi:10.1016/j.semcdb.2003.12.004
[14] Seglen, P.O. (1987) Lysosomes: Their role in protein breakdown. Academic Press, New York, 369-414.
[15] Reggiori, F. and Klionsky, D.J. (2005) Autophagosomes: Biogenesis from scratch? Current Opinion in Cell Biology, 17, 415-422. doi:10.1016/j.ceb.2005.06.007
[16] Dunn Jr., W.A. (1994) Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends in Cell Biology, 4, 139-143. doi:10.1016/0962-8924(94)90069-8
[17] Seglen, P.O. and Bohley, P. (1992) Autophagy and other vacuolar protein degradation mechanisms. Experientia, 48, 158-172. doi:10.1007/BF01923509
[18] Aplin, A., Jasionowski, T., Tuttle, D.L., Lenk, S.E., Dunn Jr., W.A. (1992) Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. Journal of Cellular Physiology, 152, 458-466. doi:10.1002/jcp.1041520304
[19] Mortimore, G.E., Poso, A.R. and Lardeux, B.R. (1989) Mechanism and regulation of protein degradation in liver. Diabetes/Metabolism Reviews, 5, 49-70. doi:10.1002/dmr.5610050105
[20] Glaumann, H., Ericsson, J.L. and Marzella, L. (1981) Mechanisms of intralysosomal degradation with special reference to autophagocytosis and heterophagocytosis of cell organelles. International Review of Cytology, 73, 149182. doi:10.1016/S0074-7696(08)61288-7
[21] Cuervo, A.M. (2004) Autophagy: Many pathways to the same end. Molecular and Cellular Biochemistry, 263, 5572. doi:10.1023/B:MCBI.0000041848.57020.57
[22] Majeski, A.E. and Dice, J.F. (2004) Mechanisms of chaperone-mediated autophagy. International Journal of Biochemistry & Cell Biology, 36, 2435-2444. doi:10.1016/j.biocel.2004.02.013
[23] Salvador, N., Aguado, C., Horst, M. and Knecht, E. (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. Journal of Biological Chemistry, 275, 27447-27456.
[24] Massey, A., Kiffin, R. and Cuervo, A.M. (2004) Pathophysiology of chaperone-mediated autophagy. International Journal of Biochemistry & Cell Biology, 36, 24202434. doi:10.1016/j.biocel.2004.04.010
[25] Klionsky, D.J. (2002) Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (cvt) pathway in S. cerevisiae. Current Opinion in Cell Biology, 14, 468-475. doi:10.1016/S0955-0674(02)00343-5
[26] Klionsky, D.J., Cregg, J.M., Dunn, W.A.J.R., Emr, S.D., Sakai, Y., Sandoval, I.V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M. and Ohsumi, Y. (2003) A unified nomenclature for yeast autophagy-related genes. Developmental Cell, 5, 539-545.
[27] Schmelzle, T. and Hall, M.N. (2000) Tor, a central controller of cell growth. Cell, 103, 253-262. doi:10.1016/S0092-8674(00)00117-3
[28] Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M. and Ohsumi, Y. (2000) Tor-mediated induction of autophagy via an apg1 protein kinase complex. Journal of Cell Biology, 150, 1507-1513. doi:10.1083/jcb.150.6.1507
[29] Abeliovich, H., Zhang, C., Dunn Jr., W.A., Shokat, K.M. and Klionsky, D.J. (2003) Chemical genetic analysis of apg1 reveals a non-kinase role in the induction of autophagy. Molecular Biology of the Cell, 14, 477-490. doi:10.1091/mbc.E02-07-0413
[30] Arico, S., Petiot, A., Bauvy, C., Dubbelhuis, P.F., Meijer, A.J., Codogno, P. and Ogier-denis, E. (2001) The tumor suppressor pten positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase b pathway. Journal of Biological Chemistry, 276, 3524335246. doi:10.1074/jbc.C100319200
[31] Kihara, A., Noda, T., Ishihara, N. and Ohsumi, Y. (2001) Two distinct vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase y sorting in saccharomyces cerevisiae. Journal of Cell Biology, 152, 519-530. doi:10.1083/jcb.152.3.519
[32] Liang, XH., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H. and Levine, B. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402, 672-676. doi:10.1038/45257
[33] Tanida, I., Tanida-miyake, E., Komatsu, M., Ueno, T. and Kominami, E. (2002) Human apg3p/aut1p homologue is an authentic e2 enzyme for multiple substrates, gate-16, gabarap, and map-lc3, and facilitates the conjugation of hapg12p to hapg5p. Journal of Biological Chemistry, 277, 13739-13744. doi:10.1074/jbc.M200385200
[34] Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki, K., Tokuhisa, T., Ohsumi, Y. and Yoshimori, T. (2001) Dissection of autophagosome formation using apg5-deficient mouse embryonic stem cells. Journal of Cell Biology, 152, 657-668. doi:10.1083/jcb.152.4.657
[35] Yorimitsu, T. and Klionsky, D.J. (2005) Autophagy: Molecular machinery for self-eating. Cell Death and Differentiation, 12, 1542-1552. doi:10.1038/sj.cdd.4401765
[36] Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000) Lc3, a mammalian homologue of yeast apg8p, is localized in autophagosome membranes after processing. EMBO Journal, 19, 5720-5728. doi:10.1093/emboj/19.21.5720
[37] Yoshimori, T. (2004) Autophagy: A regulated bulk degradation process inside cells. Biochemical and Biophysical Research Communications, 313, 453-458. doi:10.1016/j.bbrc.2003.07.023
[38] Bjornsti, M.A. and Houghton, P.J. (2004) The tor pathway: A target for cancer therapy. Nature Reviews Cancer, 4, 335-348. doi:10.1038/nrc1362
[39] Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J. and Yonezawa, K. (2002) Raptor, a binding partner of target of rapamycin (tor), mediates tor action. Cell, 110, 177-189. doi:10.1016/S0092-8674(02)00833-4
[40] Wullschleger, S., Loewith, R., Oppliger, W. and Hall, M.N. (2005) Molecular organization of target of rapamycin complex 2. Journal of Biological Chemistry, 280, 30697-30704. doi:10.1074/jbc.M505553200
[41] Jacinto, E., Loewith, R., Schmidt, A., Lin, S, Rüegg, M.A., Hall, A. and Hall, M.N. (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biology, 6, 1122-1128. doi:10.1038/ncb1183
[42] Hayashi, A.A. and Proud, C.G. (2007) The rapid activation of protein synthesis by growth hormone requires signaling through mTOR. American Journal of Physiology Endocrinology and Metabolism, 292, E1647-16455. doi:10.1152/ajpendo.00674.2006
[43] Conus, N.M., Hemmings, B.A. and Pearson, R.B. (1998) Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p70S6k. The Journal of Biological Chemistry, 273, 4776-4782. doi:10.1074/jbc.273.8.4776
[44] Hardie, D.G. (2003) Minireview: The amp-activated protein kinase cascade: The key sensor of cellular energy status. Endocrinology, 144, 5179-5183. doi:10.1210/en.2003-0982
[45] Miotto, G., Venerando, R., Marin, O., Siliprandi, N. and Mortimore, G.E. (1994) Inhibition of macroautophagy and proteolysis in the isolated rat hepatocyte by a nontransportable derivative of the multiple antigen peptide leu8-lys4-lys2-lys-beta ala. The Journal of Biological Chemistry, 269, 25348-25353.
[46] Blommaart, E.F., Luiken, J.J.F.P. and Meijer, A.J. (1997) Autophagic proteolysis: Control and specificity. Histochemical Journal, 29, 365-385. doi:10.1023/A:1026486801018
[47] Mortimore, G.E. and Poso, A.R. (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Annual Review of Nutrition, 7, 539-564. doi:10.1146/annurev.nu.07.070187.002543
[48] Boya, P., Gonzalez-Polo, R.A., Casares, N., et al. (2005) Inhibition of macroautophagy triggers apoptosis. Molecular and Cellular Biology, 25, 1025-1040. doi:10.1128/MCB.25.3.1025-1040.2005
[49] Kondo, Y., Kanzawa, T., Sawaya, R. and Kondo, S. (2005) The role of autophagy in cancer development and response to therapy. Nature Reviews Cancer, 5, 726-734. doi:10.1038/nrc1692
[50] Pattingre, S., Tassa, A., Qu, X., et al. (2005) Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell, 122, 927-939.
[51] Thorburn, J., Moore, F., Rao, A., et al. (2005) Selective inactivation of a FADD-dependent apoptosis and autophagy pathway in immortal epithelial cells. Molecular Biology of the Cell, 16, 1189-1199. doi:10.1091/mbc.E04-10-0906
[52] Trifillieff, A., Bench, A., Hanley, M., Bayley, D., Campbell, E. and Whittaker, P. (2003) PPAR-α and -γ but not -δ agonists inhibit airway inflammation in a murine model of asthma: In vitro evidence for an NF-κB-independent model. British Journal of Pharmacology, 139, 163-171. doi:10.1038/sj.bjp.0705232
[53] Xu, H.E., Lambert, M.H., Montana, V.G., Plunket, K.D., Moore, L.B., Collins, J.L., Oplinger, J.A., Kliewer, S.A., Gampe, Jr., R.T., McKee, D.D., Moore, J.T. and Willson, T.M. (2001) Structural determinant of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proceedings of the National Academy of Sciences USA, 98, 13919-13924. doi:10.1073/pnas.241410198
[54] Nagy, L., Tontonoz, P., Alvarez, J.G., Chen, H. and Evans, R.M. (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell, 93, 229-240. doi:10.1016/S0092-8674(00)81574-3
[55] Lehmann, J.M., Lenhard, J.M., Oliver, B.B., Ringold, G.M. and Kliewer, S.A. (1997) Peroxisome proliferatoractivated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. Journal of Biological Chemistry, 272, 3406-3410. doi:10.1074/jbc.272.6.3406
[56] Kletzien, R.F., Clarke, S.D. and Ulrich, R.G. (1992) Enhancement of adipocyte differentiation by an insulinsensitizing agent. Molecular Pharmacology, 41, 393-398.
[57] Vitale, G., Zappavigna, S., Marra, M., Dicitore, A., Meschini, S., Condello, M., Arancia, G., Castiglioni, S., Maroni, P., Bendinelli, P., Piccoletti, R., van Koetsveld, P.M., Cavagnini, F., Abbruzzese, A., Hofland, L.J. and Caraglia, M. (2011) The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells. Biotechnology Advances, 30, 169-184.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.