A monograph on amylases from Bacillus spp.

Abstract

Owing to the production of alpha, beta and gamma amylase subtypes; starch degrading microbes, especially bacteria have an invincible role in the food, fermentation, textile and paper industries. Of them, α-amylases from Bacillus spp. have contributed tremendous advancements in bio-industry, especially in starch, detergent and pharmaceutical arena. Though general reviews are seen in literature on amylases, no focused review is available yet solely on α-amylases produced by Bacillus spp. Hence, this focused review on α-amylases from the genus Bacillus is designed in such a way that it should give a vivid picture on most of the aspects on bacillial α-amylases in a handy module with an industrial perspective. With a short introduction on amylases in general, α-amylases from various species of Bacillus reviewed herein encompasses production of α-amylases by submerged and solid-state fermentations; nutrients and other factors required for maximizing production; immobilization strategies for whole cells or purified enzyme; an overview on the molecular weight of the enzyme; followed by distinct sections for purification, characterisation, stability and crystal structure; and concluded with a section on industrial applications of the α-amylases from Bacillus spp.

Share and Cite:

Benjamin, S. , Smitha, R. , Jisha, V. , Pradeep, S. , Sajith, S. , Sreedevi, S. , Priji, P. , Unni, K. and Josh, M. (2013) A monograph on amylases from Bacillus spp.. Advances in Bioscience and Biotechnology, 4, 227-241. doi: 10.4236/abb.2013.42032.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Smitha, R.B. (2010) Dual production of endotoxin and amylase from Bacillus thuringiensis subsp. kurstaki by fermentation and efficacy studies of endotoxin against eriophyid mite, University of Calicut, Calicut.
[2] Benjamin, S. and Pandey, A. (1996) Lipase production by Candida rugosa on copra waste extract. Indian Journal of Microbiology, 36, 201-204.
[3] Pandey, A., Soccol, C.R. and Soccol, V.T. (2000) Biopotential of immobilized amylases. Indian Journal of Microbiology, 40, 1-14.
[4] Agrawal, M., Pradeep, S., Chandraraj, K. and Sathyanarayana, N.G. (2005) Hydrolysis of starch by amylase from Bacillus Sp. KCA102: A statistical approach. Process Biochemistry, 40, 2499-2507. doi:10.1016/j.procbio.2004.10.006
[5] Akkaya, B., Yenidünya, A.F. and Akkaya, R. (2012) Production and immobilization of a novel thermoalkalophilic extracellular amylase from bacilli isolate. International Journal of Biological Macromolecules, 50, 991-995. doi:10.1016/j.ijbiomac.2012.02.011
[6] Demirkan, E.S., Mikami, B., Adachi, M., Higasa, T., et al. (2005) Alpha amylase from B. amyloliquefaciens: Purification, characterization, raw starch degradation and expression in E. coli. Process Biochemistry, 40, 2629-2646. doi:10.1016/j.procbio.2004.08.015
[7] Kandra, L. (2003) α-Amylases of medical and industrial importance. Journal of Molecular Structure, 666-667, 487498. doi:10.1016/j.theochem.2003.08.073
[8] Rajagopalan, G. and Krishnan, C. (2008) α-amylase production from catabolite depressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresource Technology, 99, 3044-3050. doi:10.1016/j.biortech.2007.06.001
[9] Liu, Y., Lu, F., Chen, G., Snyder, C.L., et al. (2010) High-level expression, purification and characterization of a recombinant medium-temperature α-amylase from Bacillus subtilis. Biotechnology Letters, 32, 119-124. doi:10.1007/s10529-009-0112-4
[10] Ye, Z., Miyake, H., Tatsumi, M., Nishimura, S., et al. (2004) Two additional carbohydrate-binding sites of αamylase from Bacillus cereus var. mycoides Are Involved in Hydrolysis and Raw Starch-Binding. Journal of Biochemistry, 135, 355-363. doi:10.1093/jb/mvh043
[11] Bijttebier, A., Goesaert, H. and Delcour, J.A. (2007) Temperature impacts the multiple attack action of amylases. Biomacromolecules, 8, 765-772. doi:10.1021/bm060784u
[12] Ray, R., Jana, S.C. and Nanda, G. (1994) β-Amylase from Bacillus megaterium. Folia Microbiologica, 39, 567-570. doi:10.1007/BF02814110
[13] Tateno, T., Fukuda, H. and Kondo, A. (2007) Production of L-Lysine from starch by Corynebacterium glutamicum displaying á-amylase on its cell surface. Applied Microbiology and Biotechnology, 74, 1213-1220. doi:10.1007/s00253-006-0766-y
[14] Kumar, P. and Satyanarayana, T. (2009) Microbial glucoamylases: Characteristics and applications. Critical Reviews in Biotechnology, 29, 225-255. doi:10.1080/07388550903136076
[15] Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K.M., Soccol, C.R., et al. (2006) α-Amylases from microbial sources—An overview on recent developments. Food Technology and Biotechnology, 44, 173-184.
[16] Tomazic, S.J. and Klibanov, A.M. (2003) Why is one Bacillus alpha-amylase more resistant against irreversible thermoinactivation than another. Journal of Biological Chemistry, 263, 3092-3096.
[17] Ajayi, A.E. and Fagade, O.E. (2006) Growth pattern and structural nature of amylases produced by some Bacillus species in starchy substrates. African Journal of Biotechnology, 5, 440-444.
[18] Narang, S. and Satyanarayana, T. (2001) Thermostable α-amylase production by an extreme thermophile Bacillus thermooleovorans. Letters in Applied Microbiology, 32, 31-35. doi:10.1046/j.1472-765x.2001.00849.x
[19] Saui, Q., Bano, S., Iqbal, S., Syed, N., et al. (2006) Enhanced production and extracellular activity of commercially important amylolytic enzyme by a newly isolated strain of Bacillus. sp. AS-1. Turkish Journal of Biochemistry, 31, 135-140.
[20] Riaz, A., Qader, S., Anwar, A. and Iqbal, S. (2009) Immobilization of a thermostable alpha-amylase on calcium alginate beads from Bacillus Subtilis KIBGE-HAR. Australian Journal of Basic and Applied Sciences, 3, 28832887.
[21] Srivastava, R.A.K. and Baruah, J.N. (1986) Culture conditions for production of thermostable amylase by Bacillus stearothermophilus. Applied and Environmental Microbiology, 52, 179-184.
[22] Tsurikova, N.V., Nefedova, L.I., Kostyleva, E.V., Zvenigorodskii, V.I., et al. (2002) Selection of a potent Bacillus licheniformis strain producing thermostable amylase. Applied Biochemistry and Microbiology, 38, 427-432. doi:10.1023/A:1019960216770
[23] Ul-Haq, I., Ashraf, H., Ali, S. and Qadeer, M.A. (2005) Pearl millet, a source of alpha amylase production by Bacillus lichenifirmis. Bioresource Technology, 96, 12011204. doi:10.1016/j.biortech.2004.09.012
[24] Rao, U.M. and Satyanarayana, T. (2007) Purification and characterization of a hyperthermostable and high maltogenic a-amylase of an extreme thermophile Geobacillus thermoleovorans. Applied Biochemistry and Biotechnology, 142, 179-193. doi:10.1007/s12010-007-0017-4
[25] Gargi, D., Singh, B. and Rintu, B. (2003) Immobilization of a-amylase produced by Bacillus circulans GRS 313. Brazilian Archives of Biology and Technology, 46, 167176.
[26] Tanyildizi, M.S., Ozer, D. and Elibol, M. (2004) Optimization of alpha amylase production by Bacillus sp. using response surface methedology. Process Biochemistry.
[27] Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K.M., Sukumaran, R.K., et al. (2008) Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource Technology, 99, 4597-4602. doi:10.1016/j.biortech.2007.07.028
[28] Rousset, S. and Schlich, P. (1989) Amylase production in submerged culture using principal component media. Journal of Fermentation and Bioengineering, 68, 339-343. doi:10.1016/0922-338X(89)90009-3
[29] Bo?i?, N., Ruiz, J., López-Santín, J. and Vuj?i?, Z. (2011) Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochemical Engineering Journal, 53, 203209. doi:10.1016/j.bej.2010.10.014
[30] Benjamin, S. and Pandey, A. (1998) Candida rugosa lipases: Molecular biology and versatility in biotechnology. Yeast, 14, 1069-1087. doi:10.1002/(SICI)1097-0061(19980915)14:12<1069::AID-YEA303>3.0.CO;2-K
[31] Pandey, A., Nigam, P., Soccol, C.R., Soccol, V.T., et al. (2000) Advances in microbial amylases. Biotechnology and Applied Biochemistry, 31, 135-152. doi:10.1042/BA19990073
[32] Ramesh, M.V. and Lonsane, B.K. (1987) Solid state fermentation for production of α-amylase by Bacillus megaterium 16M. Biotechnology Letters, 9, 323-328. doi:10.1007/BF01025797
[33] Shukla, J. and Kar, R. (2006) Potato peel as a solid state substrate for thermostable α-amylase production by thermophilic Bacillus isolates. World Journal of Microbiology & Biotechnology, 22, 417-422. doi:10.1007/s11274-005-9049-5
[34] Vijayabaskar, P., Jayalakshmi, D. and Shankar, T. (2012) Amylase production by moderately halophilic Bacillus cereus in solid state fermentation. African Journal of Microbiology Research, 6, 4918-4926.
[35] Kokab, S., Asghar, M., Rehman, K., Asad, M.J., et al. (2003) Bio processing of banana peel for alpha amylase production by Bacillus subtilis. International Journal of Agriculture and Biology, 5, 36-39.
[36] Unakal, C., Kallur, R.I. and Kaliwal, B.B. (2012) Production of α-amylase using banana waste by Bacillus subtilis under solid state fermentation. European Journal of Experimental Biology, 2, 1044-1052.
[37] Baysal, Z., Uyar, F. and Aytekin, C. (2003) Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochemistry, 38, 1665-1668. doi:10.1016/S0032-9592(02)00150-4
[38] Pandey, A., Benjamin, S., Soccol, C.R., Nigam, P., et al. (1999) The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 29, 119-131.
[39] Oguntoyinbo, F.A., Sanni, A.I., Franz, M.A.P. and Holzapfel, W.H. (2007) Phenotypic diversity and technological properties of Bacillus subtilis species isolated from okpehe, a traditional fermented condiment. World Journal of Microbiology & Biotechnology, 23, 401-410. doi:10.1007/s11274-006-9238-x
[40] Benjamin, S. and Pandey, A. (1997) Coconut cake—A potent substrate for the production of lipase by Candida rugosa in solid state fermentation. Acta Biotechnologica, 17, 241-251. doi:10.1002/abio.370170308
[41] El-Tayeb, O., Mohammad, F., Hashem, A. and Aboulwafa, M. (2008) Optimization of the industrial production of bacterial alpha amylase in Egypt. IV. fermentor production and characterization of the enzyme of two strains of Bacillus subtilis and Bacillus amyloliquefaciens. African Journal of Biotechnology, 7, 4521-4536.
[42] Sodhi, H.K., Sharma, K., Gupta, J.K. and Soni, S.K. (2005) Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochemistry, 40, 525-534. doi:10.1016/j.procbio.2003.10.008
[43] Yoon, M.Y., Yoo, Y.J. and Gadman, T.W. (1989) Phosphate effects in the fermentation of a-amylase by Bacillus amyloliquefaciens. Biotechnology Letters, 11, 57-60. doi:10.1007/BF01026787
[44] Enhasy, H.A.E. (2007) Bioprocess development for the production of alpha amylase by Bacillus amyloliquefaciens in Batch and Fed-Batch cultures. Research Journal of Microbiology, 2, 560-568. doi:10.3923/jm.2007.560.568
[45] Al-Qodah, Z., Daghstani, H., Geopal, P.H. and Lafi, W. (2007) Determination of kinetic parameters of alpha amylase producing thermophile Bacillus sphaericus. African Journal of Biotechnology, 6, 699-706.
[46] Khan, F.A.B.A. and Husaini, A.A.S.A. (2006) Enhancing a-amylase and cellulase in vivo enzyme expressions on sago pith residue using Bacilllus amyloliquefaciens UMAS 1002. Biotechnology, 5, 391-403. doi:10.3923/biotech.2006.391.403
[47] Mamo, G. and Gessesse, A. (1997) Thermostable amylase production by immobilized thermophilic Bacillus sp. Biotechnology Techniques, 11, 447-450. doi:10.1023/A:1018437310837
[48] Whitney, D.F., Toledo, R.T. and Hamdy, M.K. (2006) α-Amylase synthesis by mutant of Bacillus subtilis immobilized onto channel alumina beads. Journal of Rapid Methods & Automation in Microbiology, 14, 266-282. doi:10.1111/j.1745-4581.2006.00052.x
[49] Chevalier, P. and Nouee, J.D.I. (1987) Enhancement of α-amylase production by immobilized Bacillus subtilis in an airlift fermenter. Enzyme and Microbial Technology, 9, 53-56. doi:10.1016/0141-0229(87)90049-4
[50] Konsoula, Z. and Liakopoulou-Kyriakides, M. (2006) Thermostable α-amylase production by Bacillus subtilis entrapped in calcium alginate gel capsules. Enzyme and Microbial Technology, 39, 690-696. doi:10.1016/j.enzmictec.2005.12.002
[51] Dobreva, E., Ivanova, V., Tonkova, A. and Radulova, A. (1996) Influence of the immobilization conditions on the efficiency of α-amylase production by Bacillus licheniformis. Process Biochemistry, 31, 229-234. doi:10.1016/0032-9592(95)00052-6
[52] Groom, C.A., Daugulis, A.J. and White, B.N. (1988) Continuous alpha-amylase production using Bacillus amyloliquefaciens adsorbed on an ion exchange resin. Applied Microbiology and Biotechnology, 28, 8-13. doi:10.1007/BF00250489
[53] Nilesh, A., Kamat, M. and Lali, A. (2004) Expanded bed affinity purification of bacterial-amylase and cellulase on composite substrate analogue-cellulose matrices. Process Biochemistry, 39, 565-570. doi:10.1016/S0032-9592(03)00123-7
[54] Shewale, S.D. and Pandit, A.B. (2007) Hydrolysis of soluble starch using Bacillus licheniformis α-amylase immobilized on superporous CELBEADS. Carbohydrate Research, 342, 997-1008. doi:10.1016/j.carres.2007.02.027
[55] Borgio, J.F. (2011) Immobilization of microbial (wild and mutant strains) amylase on coconut fiber and alginate matrix for enhanced activity. American Journal of Biochemistry and Molecular Biology, 1, 255-264. doi:10.3923/ajbmb.2011.255.264
[56] Tarek, E., El-Banna, Ahmed, A., Abd-Aziz., et al. (2008) Optimization and immobilization of α-amylase from Bacillus licheniformis. The Egyptian Society for Environmental Science, 3, 14-25.
[57] Hmidet, N., Bayoudh, A., Berrin, J.G., Kanoun, S., et al. (2008) Purification and biochemical characterization of a novel α-amylase from Bacillus licheniformis NH1: Cloning, nucleotide sequence and expression of amyn gene in Escherichia coli. Process Biochemistry, 43, 499-510. doi:10.1016/j.procbio.2008.01.017
[58] Sanoja, R.R., Guyot, J.M., Jore, J., Pintado, J., et al. (2000) Comparative characterization of complete and truncated forms of Lactobacillus amylovorus alpha amylase and role of the C-terminal direct repeats in raw starch binding. Applied and Environmental Microbiology, 66, 3350-3356. doi:10.1128/AEM.66.8.3350-3356.2000
[59] Rao, M.D., Ratnam, B., Dasari, V.D. and Ayyanna, C. (2005) Rapid method for the affinity purification of thermostable a-amylase from Bacillus licheniformis. World Journal of Microbiology & Biotechnology, 21, 371-375. doi:10.1007/s11274-004-3908-3
[60] Krishnan, T. and Chandra, A.K. (1983) Purification and characterization of α-amylase from Bacillus licheniformis CUMC305. Applied and Environmental Microbiology, 46, 430-437.
[61] Vengadaramana, A., Balakumar, S. and Arasaratnam, V. (2012) Stimulation of thermal stability of α-amylase from Bacillus icheniformis ATCC 6346 by treating with cations. Ceylon Journal of Science (Biological Sciences), 41, 35-44.
[62] Bernhardsdotter, E.C., Ng, J.D., Garriott, O.K. and Pusey, M.L. (2005) Enzymic properties of an alkaline chelatorresistant α-amylase from an alkaliphilic Bacillus sp. isolate L1711. Process Biochemistry, 40, 2401-2408. doi:10.1016/j.procbio.2004.09.016
[63] Arikan, B. (2008) Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Bioresource Technology, 99, 3071-3076. doi:10.1016/j.biortech.2007.06.019
[64] Liu, Y., Lu, F., Li, Y., Yin, X., et al. (2008) alpha-amylase expressed in Bacillus subtilis WB600. Applied Microbiology and Biotechnology, 78, 85-94. doi:10.1007/s00253-007-1287-z
[65] Nagarajan, D.R., Rajagopalan, G. and Krishnan, C. (2006) Purification and characterization of a maltooligosaccharide-forming α-amylase from a new Bacillus subtilis KCC103. Applied Microbiology and Biotechnology, 73, 591-597. doi:10.1007/s00253-006-0513-4
[66] Ezeji, T. and Bahl, H. (2006) Purification, characterization and synergistic action of phytate resistant alpha amylase and alpha glucosidase from Geobacillus thermodenitrificans HRO10. Journal of Biotechnology, 125, 27-38. doi:10.1016/j.jbiotec.2006.02.006
[67] Natalia, D., Yuliani, Y., Ermayadhie, Y., Putra, R., et al. (2006) Thermostable glucoamylase-type enzyme from Bacillus acidocaldarius RP1. Biochemistry and Molecular Biology Education, 30, 398-400. doi:10.1002/bmb.2002.494030060137
[68] Konsula, Z. and Liakopoulou-Kyriakides, M. (2004) Hydrolysis of starches by the action of an α-amylase from Bacillus subtilis. Process Biochemistry, 39, 1745-1749. doi:10.1016/j.procbio.2003.07.003
[69] Hwang, K.Y., Song, H.K., Chang, C., Lee, J., et al. (1997) Crystal structure of thermostable alpha-amylase from Bacillus licheniformis refined at 1.7 A resolution. Molecules and Cells, 7, 251-258.
[70] Liu, Y.H., Lu, F.P., Wang, J.L. and Gao, C. (2008) Acid stabilization of Bacillus licheniformis alpha amylase through introduction of mutations. Applied Microbiology and Biotechnology, 80, 795-803. doi:10.1007/s00253-008-1580-5
[71] Ivanova, V.N., Dobreva, E.P. and Emanuilova, E.I. (1993) Purification and characterization of a thermostable alphaamylase from Bacillus licheniformis. Journal of Biotechnology, 28, 277-289. doi:10.1016/0168-1656(93)90176-N
[72] Femi-Ola, T.O. and Olowe, B.M. (2011) Characterization of alpha amylase from Bacillus subtilis BS5 Isolated from amitermes evuncifer silvestri. Research Journal of Microbiology, 6, 140-146. doi:10.3923/jm.2011.140.146
[73] Ozcan, B.D., Baylan, M., Ozcan, N. and Tekdal, D. (2010) Characterization of thermostable α-amylase from thermophilic and alkaliphilic Bacillus sp. Isolate DM-15. Research Journal of Biological Sciences, 5, 118-124. doi:10.3923/rjbsci.2010.118.124
[74] Nakajima, R., Imanaka, T. and Aiba, S. (1985) Nucleotide sequence of the Bacillus stearothermophilus alphaamylase gene. Journal of Bacteriology, 163, 401-406.
[75] Igarashi, K., Hatada, Y., Hagihara, H., Saeki, K., et al. (1998) Enzymatic properties of a novel liquefying-amylase from an alkaliphilic Bacillus Isolate and entire nucleotide and amino acid sequences. Applied and Environmental Microbiology, 64, 3282-3289.
[76] Marco, J.L., Bataus, L.A., Valência, F.F., Ulhoa, C.J., et al. (1996) Purification and characterization of a truncated Bacillus subtilis alpha-amylase produced by Escherichia coli. Applied Microbiology and Biotechnology, 44, 746752.
[77] Ohdan, K., Kuriki, T., Kaneko, H., Shimada, J., et al. (1999) Characteristics of two forms of alpha amylases and structural implication. Applied and Environmental Microbiology, 65, 4562-4568.
[78] Suzuki, Y., Ito, N., Yuuki, T., Yamagata, H., et al. (2006) Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. Biochemistry, 139, 997-1005.
[79] Stam, M.R., Danchin, E.G.J., Rancurel, C., Coutinho, P.M., et al. (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Engineering Design & Selection, 19, 555-562. doi:10.1093/protein/gzl044
[80] Machius, M., Declerck, N., Huber, R. and Wiegand, G. (1998) Activation of Bacillus licheniformis α-amylase through a disorder→order transition of the substratebinding site mediated by a calcium-sodium-calcium metal triad. Structure, 6, 281-292. doi:10.1016/S0969-2126(98)00032-X
[81] Watanabe, T., Yamamoto, A., Nagai, S. and Terabe, S. (1998) Simultaneous measurement of -amylase and glucoamylase activities in sake rice koji by capillary electrophoresis of sodium dodecyl sulfate-protein complexes and activity measurement of glucoamylase by in-capillary enzyme reaction method. Electrophoresis, 19, 2331-2337.
[82] Vega, M.C., Lorentzen, E., Linden, A. and Wilmanns, M. (2003) Evolutionary markers in the (β/α)8-barrel fold. Current Opinion in Chemical Biology, 7, 674-701. doi:10.1016/j.cbpa.2003.10.004
[83] Declerck, N., Machius, M., Joyet, P., Wiegand, G., et al. (2003) Hyperthermostabilization of Bacillus licheniformis-amylase and modulation of its stability over a 50?C temperature range. Protein Engineering, 16, 287-293. doi:10.1093/proeng/gzg032
[84] Elms, J., Robinson, E., Mason, H., Iqbal, S., et al. (2006) Enzyme exposure in the British baking industry. Annals of Occupational Hygiene, 50, 379-384. doi:10.1093/annhyg/mei080
[85] Samrot, A.V. and Vijay, A. (2009) α-Amylase activity of wild and mutant strains of Bacillus sp. The Internet Journal of Microbiology, 6, 2.
[86] Jones, A., Lamsa, M., Frandsen, T., Spendler, T., et al. (2008) Directed evolution of a maltogenic α-amylase from Bacillus sp. TS-25. Journal of Biotechnology, 134, 325333. doi:10.1016/j.jbiotec.2008.01.016
[87] Ito, S., Kobayashi, T., Hatada, Y. and Horikoshi, K. (2005) Enzymes in modern detergents. Methods in Biotechnology, 17, 151-161.
[88] Lee, S., Oneda, H., Minoda, M., Tanaka, A., et al. (2006) Comparison of starch hydrolysis activity and thermal stability of two Bacillus licheniformis α-amylases and insights into engineering a-amylase variants active under acidic conditions. Journal of Biochemistry, 139, 997-1005. doi:10.1093/jb/mvj113
[89] Shaw, A., Ramer, S.W., Power, S.D., Shetty, J.K., et al. (2009) Variants of Bacillus licheniformis alpha-amylase with increased thermostability and/or decreased calcium dependence. US Patent No. 20090238923.
[90] Liu, X.D. and Xu, Y. (2008) A novel raw starch digesting alpha amylase from a newly isolated bacillus sp. YX-1: Purification and characterization. Bioresource Technology, 99, 4315-4320. doi:10.1016/j.biortech.2007.08.040
[91] Hoff, T., Patkar, S.A. and Tams, J.W. (2010) Alkaline bacillus amylase. US Patent No. 7659101B2.
[92] Oishi, H.J., Hattori, T.J., Watanabe, M.J. and Kato, A.J. Method of curing and preventing obesity by alpha-amylase inhibitor. European Patent Application EP0451436 E.P.
[93] Mishra, S. and Behera, N. (2008) Amylase activity of a starch degrading bacteria isolated from soil receiving kitchen wastes. African Journal of Biotechnology, 7, 3326-3331.
[94] Huang, H., Ridgway, D., Gu, T. and Moo-Young, M. (2004) Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess and Biosystems Engineering, 27, 63-69. doi:10.1007/s00449-004-0391-z
[95] Hashim, S.O., Delgado, O., Hatt-Kaul, R., Mulaa, F.J., et al. (2004) Starch hydrolysing Bacillus halodurans isolates from a Kenyan soda lake. Biotechnology Letters, 26, 823-828. doi:10.1023/B:BILE.0000025885.19910.d7
[96] Heng, C., Chen, Z., Du, L. and Lu, F. (2005) Expression and secretion of an acid-stable a-amylase gene in Bacillus subtilis by SacB promoter and signal peptide. Biotechnology Letters, 27, 1731-1736. doi:10.1007/s10529-005-2743-4
[97] Kiran, K.K. and Chandra, T.S. (2008) Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK. Applied Microbiology and Biotechnology, 77, 1023-1031. doi:10.1007/s00253-007-1250-z
[98] Ramesh, M.V. and Lonsane, B.K. (1991) Regulation of alpha-amylase Production in Bacillus licheniformis M27 by enzyme end-products in submerged fermentation and its overcoming in solid state fermentation system. Biotechnology Letters, 13, 335-360. doi:10.1007/BF01027682
[99] Kelly, C.T., Bolton, D.J. and Fogarty, W. (1997) Bi-phasic production of a-amylase of Bacillus flavothermusin batch fermentation. Biotechnology Letters, 19, 675-677. doi:10.1023/A:1018347017004
[100] Asgher, M., Asad, M.J., Rahman, S.U. and Legge, R.L. (2007) A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. Journal of Food Engineering, 79, 950-955. doi:10.1016/j.jfoodeng.2005.12.053
[101] Carvalho, R.V., C?rrea, T.L.R., da Silva, J.C.M., de Oliveira Mansur, L.R.C., et al. (2008) Properties of an amylase from thermophilic Bacillus SP. Brazilian Journal of Microbiology, 39.
[102] Ramesh, M.V. and Lonsane, B.K. (1989) Solid state fermentation for production of higher titres of thermostable alpha-amylase with two peaks for pH optima by Bacillus licheniformis M27. Biotechnology Letters, 11, 49-52. doi:10.1007/BF01026785
[103] Baysal, Z., Uyar, F., Aytekin, C., Doru, M., et al. (2008) Production of extracellular alkaline-amylase by solid state fermentation with a newly isolated Bacillus sp. Preparative Biochemistry and Biotechnology, 38, 184-190. doi:10.1080/10826060701885167
[104] Anto, H., Trivedi, U. and Patel, K. (2006) Alpha amylase production by Bacillus cereus MTCC 1305 using solidstate fermentation. Food Technology and Biotechnology, 44, 241-245.
[105] Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K.M., Sukumaran, R.K., et al. (2006) Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technology and Biotechnology, 44, 296-274.
[106] Omafuvbe, B. (2008) Effect of temperature on biochemical changes induced by Bacillus Subtilis (SDA3) during starter culture fermentation of soybean into condiment (soy-daddawa). American Journal of Food Technology, 3, 33-41. doi:10.3923/ajft.2008.33.41
[107] Soumen, P. and Rintu, B. (2001) Optimization of extraction parameters for recovery of A-amylase from the fermented bran of Bacillus circulans GRS313. Brazilian Archives of Biology and Technology, 44, 107-111.
[108] Liu, Y.H., Lu, F.P., Li, Y., Yin, X.B., et al. (2008) Characterisation of mutagenised acid resistant alpha-amylase expressed in Bacillus subtilis WB600. Applied Microbiology and Biotechnology, 78, 85-94. doi:10.1007/s00253-007-1287-z
[109] Das, K., Doley, R. and Mukherjee, A.K. (2004) Purification and biochemical characterization of a thermostable, alkaliphilic, extracellular á-amylase from Bacillus subtilis DM-03, a strain isolated from the traditional fermented food of India. Biotechnology and Applied Biochemistry, 40, 291-298. doi:10.1042/BA20040034
[110] Huang, H.B., Chi, M.C., Hsu, W.H., Liang, W.C., et al. (2005) Construction and one-step purification of Bacillus kaustophilusleucine aminopeptidase fused to the starchbinding domain of Bacillus sp. strain TS-23 a-amylase. Bioprocess and Biosystems Engineering, 27, 389-398. doi:10.1007/s00449-005-0001-8
[111] Nonaka, T., Fujihashi, M., Kita, A., Hagiharas, H., et al. (2003) Crystal structure of calcium-free alpha amylase from Bacillus sp. Strain KSM-K 38 (Amy K38) and its sodium binding sites. The Journal of Biological Chemistry, 278, 24818-24824. doi:10.1074/jbc.M212763200
[112] Fujimoto, Z., Takase, K., Doui, N., Momma, M., et al. (1998) Crystal structure of a catalytic-site mutant α-amylase from Bacillus subtilis complexed with maltopentaose. Journal of Molecular Biology, 277, 393-407. doi:10.1006/jmbi.1997.1599
[113] Machius, M., Wiegand, G. and Huber, R. (1995) Crystal structure of calcium-depleted Bacillus licheniformis αamylase at 2.2 ? Resolution. Journal of Molecular Biology, 246, 545-559. doi:10.1006/jmbi.1994.0106
[114] Suvd, D., Fujimoto, Z., Takase, K., Matsumura, M., et al. (2001) Crystal structure of Bacillus stearothermophilus a-Amylase: Possible factors determining the thermostability. Journal of Biochemistry, 129, 461-468. doi:10.1093/oxfordjournals.jbchem.a002878
[115] Davies, G.J., Brzozowski, A.M., Dauter, Z., Rasmussen, M.D., et al. (2005) Structure of a Bacillus halmapalus family 13-amylase, BHA, in complex with an acarbosederived nonasaccharide at 2.1 ? resolution. Acta Crystallographica, 61, 190-193
[116] Ghorbel, R.E., Maktouf, S., Massoud, E.B., Bejar, S., et al. (2009) New thermostable amylase from Bacillus cohnii US147 with a broad pH applicability. Applied Biochemistry and Biotechnology, 157, 50-60. doi:10.1007/s12010-008-8278-0
[117] Thippeswamy, S., Girigowda, K. and Mulimani, V.H. (2006) Isolation and identification of alpha amylase producing Bacillus sp. from dhal industry waste. Indian Journal of Biochemistry and Biophysics, 43, 295-298.
[118] Ul-Haq, I., Ashraf, I.I., Iqbal, J. and Qadeer M.A. (2003) Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresource Technology, 87, 57-61. doi:10.1016/S0960-8524(02)00198-0
[119] Reilly, P. (2007) Amylase and Cellulase Structure and function. In: Yang, S.T., Ed., Bioprocessing for ValueAdded Products from Renewable Resources. New Technologies and Applications, Elsevier Press, Amsterdam, 119130. doi:10.1016/B978-044452114-9/50006-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.