Health> Vol.5 No.2A, February 2013

The role of eosinophils in asthma

DownloadDownload as PDF (Size:101KB)  HTML    PP. 339-343  

ABSTRACT

Asthma is a chronic inflammatory disorder of the airways characterized by recurring episodes of reversible airway obstruction, hyper-responsiveness, wheezing, breathlessness and coughing. Clinical diagnosis of asthma is based on the pattern of clinical symptoms and pulmonary fuction tests. Asthma affectes 5% - 10% of the population and the number of worldwide cases is approximately 300 milliones. The incidence of this disease is increasing particulry in western countries [1]. It is the cause of a huge economic burden to national healthcare services. In a minority of cases, asthma is potentially fatal. After a period when fatalities appeared to be increasing [2], in recent years asthma-related mortality has progressively declined due to the develop- ment of specific asthma disease management programs, as well as the extensive use of in- haled corticosteroids [3]. Inflammation of the airways is a central component in asthma. In- flammation is associated with infliltration of the airway wall with eosinophiles and or neutron- philes mast cell degranulation and T cell active- tion. Other pathological features include, sub- basement membrane thickening, loss of epithet- lial cell integrity, goblet cells hyperplasia In- crease in airway smooth muscle mass. Eosino- phils are thought to be vital in the development of airway hyperreactivity, with the eosinophil cationic protein playing a crucial role [4]. The fact that treatment of asthma with corticos-teroids reduces eosinophils numbers and decreases airway reactivity further supports this hypothesis.

KEYWORDS

Cite this paper

Alenzi, F. , Alanazi, F. , Al-Faim, A. , Al-Rabea, M. , Tamimi, W. , Tarakji, B. , Kujan, O. , Al-Jabri, A. and Wyse, R. (2013) The role of eosinophils in asthma. Health, 5, 339-343. doi: 10.4236/health.2013.52A045.

References

[1] (2008) World Health Organisation. http://www.who.int/mediacentre/factsheets/fs307/en/print.html
[2] Sears, M.R., Barnes, P.J., Rodger, I.W. and Thomson, N.C. (1998) Epidemiology. Asthma: Basic mechanisms and clinical management. Academic Press, San Diego, 1-33.
[3] Rubin, B.K. and Pohanka, V. (2012) Beyond the guide- lines: Fatal and near-fatal asthma. Paediatric Respiratory Reviews, 13, 106-111. doi:10.1016/j.prrv.2011.05.003
[4] Bystrom, J. and Amin, K. (2011) Bishop-bailey D. Ana- lysing the eosinophil cationic protein—A clue to the function of the eosinophil granulocyte. Respiratory Research, 12, 10. doi:10.1186/1465-9921-12-10
[5] Venge, P.E. (1998) Asthma: Basic mechanisms and clinical management. In: Barnes, P.J., Rodger, I.W. and Thomson, N.C., Eds., Academic Press, San Diego, 1-33.
[6] Gleich, G.J., Adolphson, C.R. and Leiferman, K.M. (1993) The biology of the eosinophilic leukocyte. Annual Review of Medicine, 44, 85-101. doi:10.1146/annurev.me.44.020193.000505
[7] Spry, C.J.F. (1998) Eosinophils: A comprehensive review and guide to the scientific and medical literature. Oxford University Press, Ox-ford, 1998.
[8] Denburg, J.A. (1998) The origins of basophils and eosinophils in allergic inflammation. Journal of Allergy and Clinical Immunology, 102, S74-S76. doi:10.1016/S0091-6749(98)70034-X
[9] Rosenberg, H.F., Phipps, S. and Foster, P.S. (2007) Eosinophil trafficking in allergy and asthma. Journal of Al- lergy and Clinical Immunology, 119, 1303-1310. doi:10.1016/j.jaci.2007.03.048
[10] Sanderson, C.J. and Urwin, D. (2000) Interleukin-5: A drug target for allergic diseases. Current Opinion in In- vestigational Drugs, 1, 435-441.
[11] Greenfeder, S., Umland, S.P., Cuss, F.M., Chapman, R.W. and Egan, RW. (2001) Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respiratory Research, 2, 71-79. doi:10.1186/rr41
[12] Tanaka, H., Komai, M., Nagao, K., Ishizaki, M., Kajiwara, D., Takatsu, K., Delespesse, G. and Nagai, H. (2004) Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. American Journal of Respira- tory Cell and Molecular Biology, 31, 62-68. doi:10.1165/rcmb.2003-0305OC
[13] Leckie, M.J., tenBrinke, A., Khan, J., Diamant, Z., O’Connor, B.J., Walls, C.M., et al. (2000) Effect of inter-leukin-5 blocking monoclonal antibody on eosinophils, airway hyperresponsiveness and the late asthmatic re- sponse. Lancet, 356, 2144-2148. doi:10.1016/S0140-6736(00)03496-6
[14] O’Byrne, P.M., Inman, M.D. and Parameswaran, K. (2001) The trials and tri-bulations of IL-5, eosinophils, and allergic asthma. Journal of Allergy and Clinical Im- munology, 108, 503-508. doi:10.1067/mai.2001.119149
[15] Lipworth, B.J. (2001) Eo-sinophils and airway hyper- responsiveness. Lancet, 357, 1446. doi:10.1016/S0140-6736(00)04597-9
[16] Flood-Page, P.T., Menzies-Gow, A.N., Kay, A.B. and Robinson, D.S. (2003) Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. American Journal of Respiratory and Critical Care Medicine, 167, 199-204. doi:10.1164/rccm.200208-789OC
[17] Huib, A.M.K., Michael, E., Ronald, D., Pierluigi, P., Ek- kehard, B., Mark, V., Ralf, S., Dipl, M., Wolfgang, S., Petra, M.-Z. and Eric, D.B. (2012) Tiotropium in asthma poorly controlled with standard combina-tion therapy. The New England Journal of Medicine, 367, 1198-1120
[18] Morokata, T., Ida, K. and Yamada, T. (2002) Characterization of YM-90709 as a novel antagonist which inhibits the binding of interleukin-5 to interleukin-5 receptor. In- ternational Immunopharmacology, 2, 1693-1702. doi:10.1016/S1567-5769(02)00191-1
[19] O’Byrne, P.M. (2011) Therapeutic strategies to reduce asthma exacerbations. Journal of Allergy and Clinical Immunology, 128, 257-263. doi:10.1016/j.jaci.2011.03.035
[20] Busse, W.W., Ring, J., Huss-Marp, J. and Kahn, J.E. (2010) A review of treatment with mepolizumab, an anti- IL-5 mAb, in hypereosinophilic syndromes and asthma. Journal of Allergy and Clinical Immu-nology, 125, 803- 813. doi:10.1016/j.jaci.2009.11.048
[21] Wenzel, S.E., Schwartz, L.B., Langmack, E.L., Halliday, J.L., Trudeau, J.B., Gibbs, R.L. and Chu, H.W. (1999) Evidence that severe asthma can be di-vided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. American Journal of Respiratory and Critical Care Medicine, 160, 1001-1008.
[22] Sexton, D.W., Blaylock, M.G. and Walsh, G. (2001) Human alveolar epithelial cells engulf apoptotic eosi-nophils by means of integrin- and phosphatidylserine receptor dependent mechanisms: A process upregulated by dexa- me-thasone. Journal of Allergy and Clinical Immunology, 108, 962-969.
[23] Schleimer, R.P. and Bochner, B.S. (1994) The effects of glucocorticoids on human eosinophils. Journal of Allergy and Clinical Immunology, 94, 1202-1213. doi:10.1016/0091-6749(94)90333-6
[24] Adachi, T., Motojima, S., Hirata, A., Fukuda, T., Kihara, N. and Kosaku, H. (1996) Eosinophil apoptosis caused by theophylline, glucocorticoids, and macrolides after stimulation with IL-5. Journal of Allergy and Clinical Immunology, 98, S207-S215. doi:10.1016/S0091-6749(96)70068-4
[25] Sexton, D.W., Al-Rabia, M.W., Blaylock, M.G. and Walsh, G.M. (2004) Pha-gocytosis of apoptotic eosinophils but not neutrophils by bron-chial epithelial cells. Clinical & Experimental Allergy, 34, 1514-1524. doi:10.1111/j.1365-2222.2004.02054.x
[26] Schleimer, R.P. (1990) Effects of glucocorticoids on inflammatory cells relevant to their therapeutic applications in asthma. American Review of Respiratory Disease, 141, S59-S69.
[27] Zhang, X., Moilanen, E. and Kankaanranta, H. (2000) Enhancement of human eosinophil apoptosis by fluticasone propionate, bude-sonide, and beclomethasone. European Journal of Pharmacology, 496, 325-332. doi:10.1016/S0014-2999(00)00690-7
[28] Meagher, L.C., Cousin, J.M., Seckl, J.R. and Haslett, C. (1996) Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. The Journal of Immunology, 156, 4422-4428.
[29] Chauhan, S., Leach, C.H., Kunz, S., bloom, J.W. and Miesfeld, R.L. (2003) Glucocorticoid regulation of human eosinophil gene expression. Journal of Steroid Bio-chemistry and Molecular Biology, 84, 441-452. doi:10.1016/S0960-0760(03)00065-7
[30] Lilly, C.M., Naka-mura, H., Kesselman, H., Nagler- Anderson, C., Asano, K. and Garcia, Z.E.A. (1997) Expression of eotaxin by human lung epithelial cells-induction by cytokines and inhibition by glu-cocorticoids. Jour- nal of Clinical Investigation, 99, 1767-1773. doi:10.1172/JCI119341
[31] Ren, Y. and Savill, J. (1995) Proinflammatory cytokines potentiate thrombospondin-mediated phagocytosis of neutrophils undergoing apoptosis. The Journal of Immunology, 154, 2366-2374.
[32] Saunders, M.W., Wheatley, A.H., George, S.J., Lai, T. and Birchall, M.A. (1999) Do corticosteroids induce apoptosis in nasal polyp inflamma-tory cells? In Vivo and in Vitro studies. Laryngoscope, 109, 785-790. doi:10.1097/00005537-199905000-00019
[33] Woolley, K.L., Gibson, P.G., Carty, K., Wilson, A.J., Twaddell, S.H. and Wool-ley, M.J. (1996) Eosinophil apoptosis and the resolution of airway inflammation in asthma. American Journal of Respiratory and Critical Care Medicine, 154, 237-243.
[34] Liu, Y.Q., Cousin, J.M., Hughes, J., Van Damme, J., Seckl, J.R. and Has-lett, C. (1999) Glucocorticoids promote nonphlogistic phago-cytosis of apoptotic leukocytes. The Journal of Immunology, 162, 3639-3646.
[35] Duval, E., Wyllie, A.H. and Morris, R.G. (1985) Macro-phage recognition of cells undergoing programmed cell death (apoptosis). Immunology, 56, 351-358.
[36] Savill, J., Hogg, N., Ren, Y. and Haslett, C. (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. Journal of Clinical Investigation, 90, 1513-1522. doi:10.1172/JCI116019
[37] Albert, M.L., Pearce, S.F.A., Francisco, L.M., Sauter, B., Roy, P. and Silverstein, R.L. (1998) Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36 and cross present antigens to cytotoxic T lym-phocytes. The Journal of Experimental Medicine, 188, 1359-1368. doi:10.1084/jem.188.7.1359
[38] Finnemann, S.C., Bonilha, V.L., Marmorstein, A.D. and Rodriguez-Boulan, E. (1997) Phagocytosis of rod outer segments by retinal pigmented epithelial cells requires αvβ5 integrin for binding but not interna-lization. Proceedings of the National Academy of Sciences of the United States of America, 94, 12932. doi:10.1073/pnas.94.24.12932
[39] Fadok, V.A., Savill, J.S., Haslett, C., Bratton, D.L., Do- herty, D.E. and Campbell, PA. (1992) Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. The Journal of Immunology, 149, 4029-4035.
[40] Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. and Henson, P.M. (1992) Exposure of phosphatidyl-serine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. The Journal of Immunology, 148, 2207-2216.
[41] Platt, N., Suzuli, H., Kurihara, Y., Kodoma, T. and Gordon, S. (1996) Role for the class A scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proceedings of the National Academy of Sciences of the United States of America, 93, 12456-12460. doi:10.1073/pnas.93.22.12456
[42] Sambrano, G.R. and Steinberg, D. (1995) Recognition of oxidatively damaged and apoptotic cells by an oxidized low-density lipoprotein receptor on mouse peritoneal macrophages: Role of membrane phospha-tidylserine. Proceedings of the National Academy of Sciences of the United States of America, 92, 1396-1400. doi:10.1073/pnas.92.5.1396
[43] Walsh, G., Sexton, D.W., Blaylock, M.G. and Convery, C.M. (1999) Resting and cyto-kine-stimulated human small airway epithelial cells recognize and ingest apoptotic eosinophils. Blood, 94, 2827-2835.
[44] Walsh, G.M. (1999) Advances in the immunobiology of eosinophils and their role in disease. Critical Reviews in Clinical Laboratory Sciences, 36, 453-496. doi:10.1080/10408369991239277
[45] Fadok, V.A., Bratton, D.L., Rose, D.M., Pearson, A., Ezekewitz, R.A.B. and Henson, P.M. (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature, 405, 85-90. doi:10.1038/35011084
[46] Fadok, V., Bratton, D.L., Frasch, S.C., Warner, M. and Henson, P.M. (1998) The role of phos-phatidylserine in recognition of apoptotic cells by phagocytes. Cell Death & Differentiation, 5, 551-562. doi:10.1038/sj.cdd.4400404
[47] Fadok, V.A., de Cathelineau, A., Daleke, D.L., Henson, P.M. and Bratton, D.L. (2001) Loss of phospholipid asym- metry and surface exposure of phosphati-dylserine is required for phagocytosis of apoptotic cells by macro- phages and fibroblasts. The Journal of Biological Chemistry, 276, 1071-1077. doi:10.1074/jbc.M003649200
[48] Alenzi, F.Q. (2009) Role of apoptosis in airway epithe- lium. Pakistan Journal of Physiology, 5, 1-10.
[49] Alenzi, F.Q. (2008) Apoptosis and eosinophils. Regula- tion and clinical relevance. Saudi Medical Journal, 29, 643-656.
[50] Alenzi, F.Q., Alenazi, B., Alanzy, F., Mubaraki, A., Salem, M., Al-Jabri, A., Lotfy, M., Bamaga, M., AlRabia, M. and Richard, K.H. (2010) The role of caspase activation and mitochondrial depolarisation in cultured human apoptotic eosinophils. Saudi Journal of Biological Sciences, 17, 29-36.

  
comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.