Developing Genetic Variability of Quinoa (Chenopodium quinoa Willd.) with Gamma Radiation for Use in Breeding Programs

Abstract

Quinoa (Chenopodium quinoa Willd.) is a staple food produced mainly by small-scale subsistence farmers in Peru’s highland. Dry seeds (cv. Pasankalla) were irradiated with doses of 150 Gy, 250 Gy and 350 Gy. In the M1 generation, the germination process was delayed with increasing radiation dose; seedling height, root length and leaf development were most reduced at 250 Gy and at 350 Gy, no plants survived. In M2, the maximum spectrum of chlorophyll mutations corresponded to 150 Gy and the maximum frequency to 250 Gy. The chlorine mutation was predominant, followed by xantha. Changes were registered for branch number, pedicel length, plant height, life-cycle duration, stem and foliage colour, and leaf morphology at the two doses, with improvements in plant type. More than one mutation per plant was found, especially at 250 Gy. In M3, the same spectrum of mutations was observed, along with a valuable change in grain colour.

Share and Cite:

L. Gomez-Pando and A. la Barra, "Developing Genetic Variability of Quinoa (Chenopodium quinoa Willd.) with Gamma Radiation for Use in Breeding Programs," American Journal of Plant Sciences, Vol. 4 No. 2, 2013, pp. 349-355. doi: 10.4236/ajps.2013.42046.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Peruvian Ministry of Agriculture, 2012. http://www.minag.gob.pe/estadistica-agraria-mensual/htm
[2] C. J. Risi and N. W. Galwey, “The Chenopodium Grains of the Andes: Inca Crops for Modern Agriculture,” Advanced and Applied Biology, Vol. 10, 1984, pp. 145-216.
[3] S. E. Jacobsen, A. Mujica and C. R. Jensen, “The Resistance of Quinoa (Chenopodium quinoa Willd.) to Adverse Abiotic Fac-tors,” Food Reviews International, Vol. 19, No. 1-2, 2003, pp. 99-109. doi:10.1081/FRI-120018872
[4] R. E. Aluko and E. Monu, “Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates,” Journal of Food Science, Vol. 68, No. 4, 2003, pp. 1254-1258. doi:10.1111/j.1365-2621.2003.tb09635.x
[5] R. Repo-Carrasco, C. Espinoza and S. E. Jacobsen, “Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and Ka?iwa (Chenopodium pallidicaule),” Food Re-views International, Vol. 19, No. 1-2, 2003, pp. 179-189. doi:10.1081/FRI-120018884
[6] L. Abugoch, E. Castro, C. Tapia, M. C. A?ón, P. Gajardo, and A. Villarroel, “Stability of Quinoa Flour Proteins (Chenopodium quinoa Willd.) during Storage,” International Journal of Food Science & Technology, Vol. 44, No. 10, 2009, pp. 2013-2020. doi:10.1111/j.1365-2621.2009.02023.x
[7] IAEA, 2012. http://www-mvd.iaea.org/MVD/default.htm
[8] B. S. Ah-loowalia, M. Maluszynski and K. Nichterlein, “Global Impact of Mutation-Derived Varieties,” Euphytica, Vol. 135, No. 2, 2004, pp. 187-204. doi:10.1023/B:EUPH.0000014914.85465.4f
[9] V. L. Chopra, “Mutagenesis: Investigating the Process and Processing the Outcome for Crops Improvement,” Current Science, Vol. 89, No. 2, 2005, pp. 353 -359.
[10] H. W. Fu, Y. F. Li and Q. Y. Shu, “A Revisit of Mutation Induction by Gamma Rays in Rice: Implications of Microsatellite Markers for Quality Control,” Molecular Breeding, Vol. 22, No. 2, 2008, pp. 281-288. doi:10.1007/s11032-008-9173-7
[11] O. F. Adekola and F. Oluleye, “Influence of Mutation Induction on the Chemical Composition of Cowpea Vigna unguiculata (L.) Walp,” African Journal of Biotechnology, Vol. 6, 2007, pp. 2143-2146.
[12] L. Gómez-Pando, A. Eguiluz, J. Jimenez, J. Falconí and E. Heros, “Barley (Hordeun vulgare) and Kiwicha (Amaranthus caudatus) Improvement by Mutation Induction in Peru,” In: Q. Y. Shu, Ed., Induced Plant Mutations in the Genomics Era, Food and Agriculture Organization of the United Nations, Rome, 2009, pp. 371-374.
[13] R. R. Myhill and C. F. Konzak, “A New Technique for Culturing and Measuring Barley Seedlings,” Crop Science, Vol. 7, No. 3, 1967, pp. 275-277. doi:10.2135/cropsci1967.0011183X000700030038x
[14] M. Maluszynsski, I. Szarejko, Ch. Bathia, K. Nichterlein, and P. Lagoda, “Methodologies for Generating Variability. Part 4: Mutation Techniques,” In: Plant Breeding and Farmer Partic-ipation, Food and Agriculture Organization of the United Na-tions, Rome, 2009. 159 -194
[15] A. Mujica, “Cultivo de Quinua,” INIA, Serie Manual RI, No. 1-97, Instituto Nacional de Investigación Agraria, Dirección General de Investigación Agraria, Lima, 1997, p. 130.
[16] H. Limburg and H. D. Mas-tebroek, “Breeding High Yielding Lines of Chenopodium quinoa Willd. with Saponin Free Seed,” Small Grain Cereals and Pseudo Cereals Workshop: Crop Development for the Cool and Wet Regions of Europe, The Royal Veterinary and Agricultural University, Copenhagen, 1996, pp. 103-114.
[17] A. A. Cheema and B. M. Atta, “Radiosensitivity Studies in Basmati Rice,” Pakistan Journal of Botany, Vol. 35, No. 2, 2003, pp. 197-207.
[18] J. N. Tabosa, W. Colaco, O. V. Reis, J. B. Simplicío and F. M. Dias, “Sorghum Genotypes Tolerant to Soil Salinity-Progenies Developed under Gamma Ray Doses,” E Journal.icrisat.org, Vol. 5, No. 1, 2007, pp. 1-5.
[19] J. Encheva, M. Christov, N. Nenov, F. Tsvetkova, P. Ivanov, P. Shindrova and V. Encheva, “Developing Genetic Variability in Sunflower (Helianthus annuus L.) by Combined Use of Hy-bridization with Gamma Radiation or Ultrasound,” Helia, Vol. 26, No. 38, 2003, pp. 99-108. doi:10.2298/HEL0338099E
[20] Y. Chen, L. S. Lee, H. Hill, R. Henry and C. Banos, “Rough Texture of Mungbean (Vigna radiata L.) First True Leaves Induced by Gamma Irradiation,” Plant Mut Rep, Vol. 2, No. 1, 2008, pp. 39-43.
[21] A. Sheeba, S. M. Ibrahim, S. Yogameenakshi and S. Babu, “Mutagen In-duced Polygenic Variability in Sesame (Sesamum indicum L.),” Madras Agricultural Journal, Vol. 91, No. 1-3, 2004, pp. 75-78.
[22] M. E. Tapia, “Cultivos Andinos Subexplotados y Su Aporte a la Alimentación,” 2nd Edition, Oficina Regional de la FAO para America Latina y el Caribe, Santiago, 2000.
[23] Y. Zhou, Z. H. He, X. X. Sui, X. C. Xia, X. K. Zhang, and G. S. Zhang, “Genetic Improvement of Grain Yield and Associated Traits in the Northern China Winter Wheat Region from 1960 to 2000,” Crop Science, Vol. 47, No. 1, 2007, pp. 245-253. doi:10.2135/cropsci2006.03.0175
[24] J. Rutger, “Induced Semidwarf Mutants,” Rice Genetics Newsletter, Vol. 1, 1984, pp. 92-93.
[25] A. Sasaki, M. Ashikari, M. Ueguchi-Tanaka, H. Itoh, A. Nishimura, D. Swapan, K. Ishiyama, T. Saito, M. Kobayashi, G. S. Khush, H. Kitano and M. Matsuoka, “Green Revolution: A Mutant Gibberellin-Synthesis Gene in Rice,” Nature, Vol. 416, No. 6882, 2002, pp. 701-702. doi:10.1038/416701a
[26] M. S. Swaminathan, “Biological Effects of Neutron Irradiations,” Current Science, Vol. 33, 1964, pp. 299-300.
[27] R. N. Sawhney, V. L. Chopra, K. Rajinder and H. R. Mohindroo, “Radiation Induced Amber-Grained Mutants in Variety Tonari 71 of Wheat,” Current Science, Vol. 46, 1977, pp. 317-318.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.