Single Step Solid-Solid Reaction Scheme for the Synthesis of Cobalt Sulphide-Oxide Nanoparticles in Polymer Matrix

Abstract

At present, there is considerable interest in polymer-metal chalcogenides/oxides based nano-composites on account of their tunable optical, magnetic, electronic and catalytic properties. Here in, we report a simple single step approach for the in-situ synthesis of combined cobalt sulphide/cobalt oxide in polyphenylenesulphide (PPS) polymer matrix. We have illustrated the suitability of this methodology by reacting commonly available cobalt precursors with engineering thermoplastic, PPS. The cobalt precursor was homogeneously mixed with PPS in the molar ratios of 1:1, 1:5, 1:10, 1:15, respectively, followed by heating the mixtures obtained at the melting temperature of the polymer (285?C) for six hours. The resultant products were characterized by X-ray Diffractometry (XRD), Field-Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Diffuse Reflectance Spectroscopy (DRS) technique and Fourier Transformation Infra red Spectroscopy (FTIR). Formation of mixed phases viz., sulphide and oxide of cobalt within modified PPS matrix was confirmed by XRD. The resultant nanoparticles of cobalt sulphide and cobalt oxide embedded in the PPS matrix showed crooked and chunk morphology. The optical properties of the resultant nanocomposites indicate the shift in the absorption hump due to nanoscale size effect.

Share and Cite:

Rumale, N. , Arbuj, S. , Umarji, G. , Shinde, M. , Mulik, U. , Pokle, A. and Amalnerkar, D. (2013) Single Step Solid-Solid Reaction Scheme for the Synthesis of Cobalt Sulphide-Oxide Nanoparticles in Polymer Matrix. Advances in Nanoparticles, 2, 28-31. doi: 10.4236/anp.2013.21006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. F. Nicolais and G. Carotenuto, “Synthesis of Polymer-Embedded Metal, Semimetal, or Sulfide Clusters by Thermolysis of Mercaptide Molecules Dissolved in Polymers,” Recent Patents on Materials Sciences, Vol. 1, No. 1, 2008, pp. 1-11. doi:10.2174/1874464810801010001
[2] X. H. Liu, “Hydrothermal Synthesis and Characterization of Nickel and Cobalt Sulfides Nanocrystallines,” Materials Science and Engineering B, Vol. 119, No. 1, 2005, pp. 19-24. doi:10.1016/j.mseb.2004.12.051
[3] L. P. Deshmukh and S. T. Mane, “Liquid Phase Chemical Deposition of Cobalt Sulphide Thin Films: Growth and Properties,” Digest Journal of Nanomaterials and Biostructures, Vol. 6, No. 3, 2011, pp. 931-936.
[4] H. Yang, Y. Hu, X. Zang and G. Qui, “Mechanochemical Synthesis of Cobalt Oxide Nanoparticles,” Materials Letters, Vol. 58, No. 3-4, 2004, pp. 387-389. doi:10.1016/S0167-577X(03)00507-X
[5] G. H. Yue, P. X. Yan, X. Y. Fan, M. X. Wang, D. M. Qu, Z. G. Wu, C. Li and D. Yan, “Structure and Properties of Cobalt Disulfide Nanowire Arrays Fabricated by Electrodeposition,” Electrochemical and Solid-State Letters, Vol. 10, No. 3, 2007, pp. D29-D31. doi:10.1149/1.2430564
[6] Y. Yin, C. K. Erdonmez, A. Cabot, S. Hughes and A. P. Alvistatos, “Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals,” Advanced Functional Materials, Vol. 16, No. 11, 2006, pp. 1389-1399. doi:10.1002/adfm.200600256
[7] K. Y. Niu, J. Yang, S. A. Kulinich, J. Sun and X. W. Du, “Hollow Nanoparticles of Metal Oxides and Sulfides: Fast Preparation via Laser Ablation in Liquid,” Langmuir, Vol. 26, No. 22, 2010, pp. 16652-16657. doi:10.1021/la1033146
[8] P. Justin and G. R. Rao, “CoS Spheres for High Rate Electrochemical Capacitive Energy Storage Application,” International Journal of Hydrogen Energy, Vol. 35, No. 18, 2010, pp. 9709-9715. doi:10.1016/j.ijhydene.2010.06.036
[9] S. J. Bao, Y. Li, C. M. Li, Q. Bao, Q. Lu and J. Guo, “Shape Evolution and Magnetic Properties of Cobalt Sulfide,” Crystal Growth Design, Vol. 8, No. 7, 2008, pp. 3745-3749. doi:10.1021/cg800381e
[10] N. Khaorapapong, A. Ontam and M. Ogawa, “Very Slow Formation of Copper Sulfide and Cobalt Sulfide Nano particles in Montmorillonite,” Applied Clay Science, Vol. 51, No. 1, 2011, pp. 182-186. doi:10.1016/j.clay.2010.10.030
[11] C. R. Indulal, G. S. Kumar, A. V. Vaidyan and R. Raveendran, “Oxide Nanostructures: Characterisations and Optical Band Gap Evaluations of Cobalt Manganese and Nickel at Different Temperatures”, Journal of Nano and Electronic Physics, Vol. 3, No. 1, 2011, pp. 170-178.
[12] K. GézaSzabó and M. Zrínyi, “Liquid-Phase Synthesis of Cobalt Oxide Nanoparticles,” Journal of Nanoscience and Nanotechnology, Vol. 11, No. 5, 2011, pp. 1-9.
[13] F. I. Ezema, “Preparation and Optical Characterization of Chemical Bath Deposited CdCoS2 Thin Films,” Journal of Applied Sciences, Vol. 6, No. 8, 2006, pp. 1827-1832. doi:10.3923/jas.2006.1827.1832
[14] T. Yu, Y. Zhu, X. Xu, Z. Shen, P. Chen, C. T. Lim, J. Thiam, L. Thong and C. H. Sow, “Controlled Growth and Field Emission Properties of Cobalt Oxide Nanowalls,” Advanced Materials, Vol. 17, No. 13, 2005, pp. 1595 1599. doi:10.1002/adma.200500322
[15] S. R. Ahmed and P. Kofinas, “Magnetic Properties and Morphology of Block Copolymer-Cobalt Oxide Nanocomposites,” Journal of Magnetism and Magnetic Materials, Vol. 288, 2005, pp. 219-223. doi:10.1016/j.jmmm.2004.09.009
[16] J. Pyun, “Nanocomposite Materials from Functional Polymers and Magnetic Colloids,” Polymer Reviews, Vol. 47, No. 2, 2007, pp. 231-263. doi:10.1080/15583720701271294
[17] N. Mathur, R. K. Joshi, G. V. Subbaraju and H. K. Sehgal, “Solution Grown Pb1?xCoxS Semiconductor Nanoparticle Film,” Physica E: Low-Dimensional Systems and Nanostructures, Vol. 23, No. 1-2, 2004, pp. 56-60.
[18] L. He, Z. Li and Z. Zhang, “Rapid, Low-Temperature Synthesis of Single Crystalline Co3O4 Nanorods on Silicon Substrates on a Large Scale,” Nanotechnology, Vol. 19, No. 15, 2008, Article ID: 155606. doi:10.1088/0957-4484/19/15/155606

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.