Density Functional Theory Studies on the Addition and Abstraction Reactions of OH Radical with Benzoate Anion

Abstract

The addition and abstraction reactions of OH radical with benzoate anion are investigated by density functional theory calculations that include solvent effects using UB3LYP, UCAM-B3LYP, UmPW1PW91 and UM06-2X functionals with the 6-311++G(2d,2p) basis set. Geometry optimizations of the reactants, products and transition state species are performed for the possible reaction paths. For the addition reactions, those targeting the ipso-, ortho-, meta- and para-carbons are predicted to be exoergic. The H-atom abstraction reactions from ortho, meta and para positions are also predicted to be exoergic. On the basis of the rate constants calculated by means of the transition state theory, the H-atom abstraction reaction from the ortho position is determined to be the favored path followed by the ortho OH addition reaction.

Share and Cite:

N. Tanaka and S. Itoh, "Density Functional Theory Studies on the Addition and Abstraction Reactions of OH Radical with Benzoate Anion," Open Journal of Physical Chemistry, Vol. 3 No. 1, 2013, pp. 7-13. doi: 10.4236/ojpc.2013.31002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C B. Zurro, “A Broad-Band Plasma Radiation Detector with Spatial-Resolution Based on the Optical-Scanning of the Fluorescence of a Phosphor,” Review of Scientific Instruments, Vol. 62, No. 1, 1991, pp. 118-123. doi:10.1063/1.1142318
[2] W. A. Armstrong and D. W. Grant, “A Highly Sensitive Chemical Dosimeter for Ionizing Radiation,” Nature, Vol. 182, No. 4637, 1958, pp. 747.
[3] G. L. Newton and J. R. Milligan, “Fluorescence Detection of Hydroxyl Radicals,” Radiation Physics and Chemistry, Vol. 75, No. 4, 2006, pp. 473-478.
[4] S. E. Page, W. A. Arnold and K. McNeill, “Terephthalate as a Probe for Photochemically Generated Hydroxyl Radical,” Journal of Environmental Monitoring, Vol. 12, No. 9, 2010, pp. 1658-1665. doi:10.1039/c0em00160k
[5] M. Perakyla and T. A. Pakkanen, “Ab Initio Molecular Orbital Study on Reactivity of Phenol, Biphenyl, Benzoate and p-Hydroxybenzoate in the ·OH Addition Reaction and Stability of the Corresponding ·H and ·OH Cyclohexadienyl Adducts,” Journal of the Chemical Society-Perkin Transactions 2, No. 7, 1995, pp. 1405-1410. doi:10.1039/P29950001405
[6] M. Kilic, G. Koctürk, N. San and Z. Cinar, “A Model for Prediction of Product Distributions for the Reactions of Phenol Derivatives with Hydroxyl Radicals,” Chemosphere, Vol. 69, No. 9, 2007, pp. 1396-1408. doi:10.1016/j.chemosphere.2007.05.002
[7] A. Hatipoglu, D. Vione, Y. Yalcin, C. Minero and Z. Cinar, “Photo-oxidative Degradation of Toluene in Aqueous Media by Hydroxyl Radicals,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 215, No. 1, 2010, pp. 59-68. doi:10.1016/j.jphotochem.2010.07.021
[8] C. Lee, W. Yang and R. G. Parr, “Development of the Colic-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B, Vol. 37, No. 2, 1988, pp. 785-789. doi:10.1103/PhysRevB.37.785
[9] C. Adamo and V. Barone, “Exchange Functionals with Improved Long-Range Behavior and Adiabatic Connection Methods without Adjustable Parameters: The mPW and mPW1PW Models,” The Journal of Chemical Physics, Vol. 108, No. 2, 1998, pp. 664-675. doi:10.1063/1.475428
[10] D. G. Truhlar and Y. Zhao, “The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals,” Theoretical Chemistry Accounts, Vol. 120, No. 1-3, 2008, pp. 215-241. doi:10.1007/s00214-007-0310-x
[11] T. Yanai, D. P. Tew and N. C. Handy, “A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP),” Chemical Physics Letters, Vol. 393, No. 1-3, 2004, pp. 51-57. doi.org/10.1016/j.cplett.2004.06.011
[12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, ?. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, “Gaussian 09, Revision B.01,” Gaussian, Inc., Wallingford CT, 2009.
[13] E. Wigner, “Crossing of Potential Thresholds in Chemical Reactions,” Zeitschrift für Physikalische Chemie, Vol. B19, 1932, pp. 203-216.
[14] G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, “Critical Review of Rate Constants for Reations of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/·O?) in Aqueous Solution,” Journal of Physical and Chemical Reference Data, Vol. 17, No. 2, 1988, pp. 513-886. doi:10.1063/1.555805

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.