Share This Article:

Hyperbolic Coxeter Pyramids

Full-Text HTML XML Download Download as PDF (Size:200KB) PP. 78-82
DOI: 10.4236/apm.2013.31010    4,751 Downloads   6,289 Views   Citations
Author(s)    Leave a comment


Hyperbolic Coxeter polytopes are defined precisely by combinatorial type. Polytopes in hyperbolic n-space with n + p faces that have the combinatorial type of a pyramid over a product of simplices were classified by Tumarkin for small p. In this article we generalise Tumarkins methods and find the remaining hyperbolic Coxeter pyramids.

Cite this paper

J. Mcleod, "Hyperbolic Coxeter Pyramids," Advances in Pure Mathematics, Vol. 3 No. 1, 2013, pp. 78-82. doi: 10.4236/apm.2013.31010.


[1] E. B. Vinberg, “Hyperbolic Groups of Reflections,” Uspekhi Matematicheskikh Nauk, Vol. 40, 1985, pp. 29-66.
[2] F. Lannér, “On Complexes with Transitive Groups of Auto-morphisms,” Communications du Séminaire Mathématique de l'Université de Lund, Vol. 11, 1950, p. 71.
[3] N. W. Johnson, R. Kellerhals, J. G. Ratcliffe and S. T. Tschantz, “Commensurability Classes of Hyperbolic Coxeter Groups,” Linear Algebra and Its Applications, Vol. 345, No. 1, 2002, pp. 119-147. doi:10.1016/S0024-3795(01)00477-3
[4] N. W. Johnson, R. Kellerhals, J. G. Ratcliffe and S. T. Tschantz, “The Size of a Hyperbolic Coxeter Simplex,” Transformation Groups, Vol. 4, No. 4, 1999, pp. 329-353. doi:10.1007/BF01238563
[5] M. Chein, “Recherce des Graphes des Matrices de Coxeter Hyperboliques d’Ordre ≤10,” Revue Francaise Informatique Recherche Opérationnelle, Vol. 3, No. 2, 1969, pp. 3-16.
[6] A. A. Felikson, “Coxeter Decomposition of Hyperbolic Simplexes,” Sbornik: Mathematics, Vol. 193, No. 12, 2002, pp. 11-12. doi:10.1070/SM2002v193n12ABEH000702
[7] P. V. Tumarkin, “Hyperbolic Coxeter Polytopes in Hm with n + 2 Hyperfacets,” Mathematical Notes, Vol. 75, No. 5-6, 2004, pp. 848-854. doi:10.1023/B:MATN.0000030993.74338.dd
[8] P. V. Tumarkin, “Hyperbolic n-Dimensional Coxeter Poly-topes with n + 3 Facets,” Transactions of the Moscow Mathematical Society, Vol. 58, No. 4, 2004, pp. 235-250.
[9] G. Ziegler, “Lectures on Polytopes,” Springer-Verlag, New York, 1995.
[10] E. B. Vinberg, “Geometry II,” Springer-Verlag, Berlin, 1993.
[11] A. A. Felikson and P. V. Tumarkin, “Hyperbolic Subalgebras of Hyperbolic Kac-Moody Algebras,” Transformation Groups, Vol. 17, No. 1, 2012, pp. 87-122. doi:10.1007/s00031-011-9169-y

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.