Sol-Gel Synthesis of SiO2-CaO-Na2O-P2O5 Bioactive Glass Ceramic from Sodium Metasilicate

Abstract

Bioactive glass ceramic with SiO2-Ca2O-Na2O-P2O5 composition was prepared by the sol-gel method using sodium metasilicate (Na2SiO3) as silica source. The monolith obtained was sintered at 1000?C for 2 hours after which X-ray diffraction (XRD) analysis showed presence of combeite (Na2Ca2Si3O9) as the crystalline phase. In vitro bioactivity test conducted on the material using simulated body fluid (SBF) showed the formation of carbonated hydroxyapatite on its surface. The material during the SBF test was observed to transform from a mechanically strong crystalline phase Na2Ca2Si3O9 to an amorphous phase after incubation for 14 days indicating that the material was biodegradable. Scanning electron microscopy (SEM) was used to investigate the surface morphology, while Fourier transform infrared (FTIR) spectroscopy facilitated the confirmation of hydroxyapatite (HA) formation. The monolith material obtained may be a good candidate for application in tissue engineering scaffolds.

Share and Cite:

L. Adams, E. Essien, R. Shaibu and A. Oki, "Sol-Gel Synthesis of SiO2-CaO-Na2O-P2O5 Bioactive Glass Ceramic from Sodium Metasilicate," New Journal of Glass and Ceramics, Vol. 3 No. 1, 2013, pp. 11-15. doi: 10.4236/njgc.2013.31003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Nkenke, S. Schultze-Mosgau, M. Radespiel-Troger, F. Kloss and F. W. Neukam, “Morbidity of Harvesting of Chin Grafts: A Prospective Study,” Clinical Oral Implants Research, Vol. 2, No. 5, 2001, pp. 495-502. doi:10.1034/j.1600-0501.2001.120510.x
[2] S. H. Palmer, C. L. Gibbons and N. A. Athanasou, “Pathology of Bone Allograft,” Journal of Bone and Joint Surgery British, Vol. 81, No. 2, 1999, pp. 333-338. doi:10.1302/0301-620X.81B2.9320
[3] J. R. Woodward, A. J. Hilldore, S. K. Lan, C. J. Park, A. W. Morgan, J. A. C. Eurell, S. G. Clark, M. B. Wheeler, R. D. Jamison and A. J. W. Johnson, “The Mechanical Properties and Osteoconductivity of Hydroxyapatite Bone Scaffolds with Multi-Scale Porosity,” Biomaterials, Vol. 28, No. 1, 2007, pp. 45-54.
[4] L. L. Hench and J. M. Polak, “Third Generation Biomaterials,” Science, Vol. 295, No. 5557, 2002, pp. 1014-1017. doi:10.1126/science.1067404
[5] G. Goller, H. Demirkiran, F. N. Oktar and E. Demirkesen, “Process and Characterization of Bioglass Reinforced Hydroxyapatite Composites,” Ceramics International, Vol. 29, No. 6, 2003, pp. 721-724. doi:10.1016/S0272-8842(02)00223-7
[6] L. L. Hench and J. Wilson, “Surface-Active Biomaterials,” Science, Vol. 226, No. 4675, 1984, pp. 630-636. doi:10.1126/science.6093253
[7] I. D. Xynos, A. J. Edgar, L. D. K. Buttery, L. L. Hench and J. M. Polak, “Gene-Expression Profiling of Human Osteoblasts Following Treatment with Ionic Products of Bioglass? 45S5 Dissolution,” Journal of Biomedical and Materials Research, Vol. 55, No. 2, 2001, pp. 151-157. doi:10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D
[8] L. L. Hench, “Genetic Design of Bioactive Glass,” Journal of European Ceramic Society, Vol. 29, No.7, 2009, pp. 1257-1265. doi:10.1016/j.jeurceramsoc.2008.08.002
[9] S. K. Ghosh, S. K Nandi, B. Kundu, S. Datta, D. K. De, S. K. Roy and D. Basu, “In Vivo Response of Porous Hydroxyapatite and Beta-Tricalcium Phosphate Prepared by Aqueous Solution Combustion Method and Comparison With Bioglass Scaffolds,” Journal of Biomedical and Materials Research Part B: Applied Biomaterials, Vol. 86B, No. 1, 2008, pp. 217-227. doi:10.1002/jbm.b.31009
[10] Q. C. Chen, Y. Li, L. Y. Jin, J. M. W. Quinn and P. A. Komesaroff, “A New Sol-Gel Process for Producing Na2O Containing Bioactive Glass Ceramics,” Acta Biomaterialia, Vol. 6, No. 10, 2010, pp. 4143-4153. doi:10.1016/j.actbio.2010.04.022
[11] L. L. Hench, “Bioceramics,” Journal of American Ceramic Society, Vol. 81, No. 7, 1998, pp. 1705-1728. doi:10.1111/j.1151-2916.1998.tb02540.x
[12] J. R. Jones, E. Gentleman and J. Polak, “Bioactive Glass Scaffolds for Bone Regeneration,” Elements, Vol. 3, No. 6, 2007, pp. 393-399. doi:10.2113/GSELEMENTS.3.6.393
[13] P. Sepulveda, J. R. Jones and L. L. Hench, “Characterization of Melt-Derived 45S5 and Gel-Derived Bioactive Glass,” Journal of Biomedical Materials Research, Vol. 58, No. 6, 2001, pp. 734-740. doi:10.1002/jbm.10026
[14] D. Arcos, D. C. Greenspan and M. Vallet-Regi, “A New Quantitative Method to Evaluate the in Vitro Bioactivity of Melt-Derived Silicate Glasses,” Journal of Biomedical Materials Research, Vol. 65A, No. 3, 2003, pp. 344-351. doi:10.1002/jbm.a.10503
[15] O. Peitl, E. D. Zanotto, G. P. Latorre and L. L. Hench, “Bioactive Ceramics and Method of Preparing Ceramics”, US Patent No. 041079, 1997.
[16] R. L. Siqueira, O. Peitl and E. D. Zanotto, “Gel-Derived SiO2-CaO-Na2O-P2O5 Bioactive Powders Synthesis and in Vitro Bioactivity,” Materials Science and Engineering C, Vol. 31, No. 5, 2011, pp. 983-991. doi:10.1016/j.msec.2011.02.018
[17] S. Sakka, “Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications,” Kluwer Academic Publishers, New York, 2005.
[18] J. R. Jones, “New Trends in Bioactive Scaffolds: The Importance of Nanostructure,” Journal of European Ceramic Society, Vol. 29, No. 7, 2009, pp. 1275-1281. doi:10.1016/j.jeurceramsoc.2008.08.003
[19] P. Saravanapavan, J. R. Jones, R. S. Pryce and L. L. Hench, “Bioactivity of Gel-Glass Powders in the CaO-SiO2 System: A Comparison with Ternary (CaO-P2O5-SiO2) and Quaternary Glasses (SiO2-CaO-P2O5-Na2O),” Journal of Biomedical Materials Research Part A, Vol. 66, No. 1, 2003, pp. 110-119. doi:10.1002/jbm.a.10532
[20] Z. Li, B. Hou, Y. Xu, D. Wu, Y. Sun, W. Hu and F. Deng, “Comparative Study of Sol-Gel Hydrothermal and Sol-Gel Synthesis of Titania-Silica Composite Nanoparticles,” Journal Solid State Chemisty, Vol. 178, No. 5, 2005, pp. 1395-1405. doi:10.1016/j.jssc.2004.12.034
[21] E. Pabon, J. Retuert, R. Quijada and A. Zarate, “TiO2-SiO2 Mixed Oxides Prepared by a Combined Sol-Gel and Polymer Inclusion Method,” Microporous Materials, Vol. 67, No. 2-3, 2004, pp. 195-203. doi:10.1016/j.micromeso.2003.10.017
[22] M. Crisan, M. Raileanu, S. Preda, M. Zaharescu, A. M. Valean, E. J. Popovici, V. S. Teodorescu, V. Matejec and J. Mrazek, “Manganese Doped Sol-Gel Materials with Catalytic Properties” Journal of Optoelectronics and Advanced Materials, Vol. 8, No. 2, 2006, pp. 815-819.
[23] T. Kokubo, “Apatite Formation on Surfaces of Ceramics, Metals and Polymers in Body Environment,” Acta Materialia, Vol. 46, No. 7, 1998, pp. 2519-2527.
[24] T. Kokubo and H. Takadama, “How Useful Is SBF in Predicting in Vivo Bone Bioactivity?” Biomaterials, Vol. 27, No. 15, 2006, pp. 2907-2915. doi:10.1016/j.biomaterials.2006.01.017
[25] O. Peitl, E. D. Zanotto and L. L. Hench, “Highly Bioactive P2O5-Na2O-CaO-SiO2 Glass-Ceramics,” Journal of Non-Crystalline Solids, Vol. 292, No. 1-3, 2001, pp. 115-126. doi:10.1016/S0022-3093(01)00822-5
[26] D. C. Clupper, J. J. Mecholsky, G. P. LaTorre and D. C. Greenspan, “Bioactivity of Tape Cast and Sintered Glass-Ceramics in Simulated Body Fluid,” Biomaterials, Vol. 23, No. 12, 2002, pp. 2599-2606. doi:10.1016/S0142-9612(01)00398-2
[27] Q. Z Chen, I. D. Thompson and A. R. Boccaccini, “45S5 Bioglass-Derived Glass-Ceramic Scaffolds for Tissue Engineering,” Biomaterials, Vol. 27, No. 11, 2006, pp. 2414-2425. doi:10.1016/j.biomaterials.2005.11.025
[28] O. Peitl, E. D. Zanotto, L. L. Hench, “Effect of Crystallization on Apatite Layer Formation of Bioactive Glass 45S5,” Journal of Biomedical Materials Research, Vol. 30, No. 4, 1996, pp. 509-514. doi:10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T
[29] J. Zhong and D. C. Greespan, “Processing and Properties of Sol-Gel Bioactive Glasses,” Journal of Biomedical Materials Research: Applied. Biomaterials, Vol. 53, No. 6, 2000, pp. 694-701.
[30] L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, D. Bernache-Assolant and A. Govin, “Structural Transformations of Bioactive Glass 45S5 with Thermal Treatments,” Acta Materialia, Vol. 55, No. 10, 2007, pp. 3305-3313. doi:10.1016/j.actamat.2007.01.029
[31] S. R. Radin and P. Ducheyne, “Plasma Spraying Induced Changes of Calcium Ceramic Characteristics and Effect on in Vitro Stability,” Journal of Materials Science: Materials in Medicine, Vol. 3, No, 1, 1992, pp. 33-42. doi:10.1007/BF00702942
[32] J. Wang, Q. Liu, J. G. C. Wolke, X. Zhang and K. De Groot, “Formation and Characteristics of the Apatite Layer on Plasma-Sprayed Hydroxyapatite Coating in Simulated Body Fluid,” Biomaterials, Vol. 18, No. 15, 1997, pp. 1027-1035. doi:10.1016/S0142-9612(97)00022-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.