Dispersal Ability and Environmental Adaptability of Deep-Sea Mussels Bathymodiolus (Mytilidae: Bathymodiolinae)

Abstract

Dispersal ability and environmental adaptability are profoundly associated with colonization and habitat segregation of deep-sea animals in chemosynthesis-based communities, because deep-sea seeps and vents are patchily distributed and ephemeral. Since these environments are seemingly highly different, it is likely that vent and seep populations must be genetically differentiated by adapting to their respective environments. In order to elucidate dispersal ability and environmental adaptability of deep-sea mussels, we determined mitochondrial ND4 sequences of Bathymodiolus platifrons and B. japonicus obtained from seeps in the SagamiBayand vents in the Okinawa Trough. Among more than 20 species of deep-sea mussels, only three species in the Japanese waters including the above species can inhabit both vents and seeps. We examined phylogenetic relationships, genetic divergences (Fst), gene flow (Nm), and genetic population structures to compare the seep and vent populations. Our results showed no genetic differentiation and extensive gene flow between the seep and vent populations, indicating high dispersal ability of the two species, which favors colonization in patchy and ephemeral habitats. Our results also indicate that the environmental type (vent or seep) is not the primary factor responsible for habitat segregation in the two species.

 

Share and Cite:

J. Miyazaki, S. Beppu, S. Kajio, A. Dobashi, M. Kawato, Y. Fujiwara and H. Hirayama, "Dispersal Ability and Environmental Adaptability of Deep-Sea Mussels Bathymodiolus (Mytilidae: Bathymodiolinae)," Open Journal of Marine Science, Vol. 3 No. 1, 2013, pp. 31-39. doi: 10.4236/ojms.2013.31003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Lonsdale, “Clustering of Suspension-Feeding Macrobenthos near Abyssal Hydrothermal Vents at Oceanic Spreading Centers,” Deep-Sea Research, Vol. 24, No. 9, 1977, pp. 857-863. doi:10.1016/0146-6291(77)90478-7
[2] D. Jollivet, “Specific and Genetic Diversity at Deep-Sea Hydrothermal Vents: An Overview,” Biodiversity and Conservation, Vol. 5, No. 12, 1996, pp. 1619-1653. doi:10.1007/BF00052119
[3] V. Tunnicliffe and S. K. Juniper, “Cosmopolitan Underwater Fauna,” Nature, Vol. 344, No. 6424, 1990, p. 300. doi:10.1038/344300a0
[4] S. Kojima, S. Ohta, T. Yamamoto, T. Miura, Y. Fujiwara, K. Fujikura and J. Hashimoto, “Molecular Taxonomy of Vestimentiferans of the Western Pacific and Their Phylogenetic Relationship to Species of the Eastern Pacific. II. Families Escarpiidae and Arcovestiidae,” Marine Biology, Vol. 141, No. 1, 2002, pp. 57-64.
[5] S. Kojima, S. Ohta, T. Yamamoto, T. Miura, Y. Fujiwara and J. Hashimoto, “Molecular Taxonomy of Vestimentiferans of the Western Pacific and Their Phylogenetic Relationship to Species of the Eastern Pacific. I. Family Lamellibrachiidae,” Marine Biology, Vol. 139, No. 2, 2001, pp. 211-219. doi:10.1007/s002270100581
[6] K. Fujikura, S. Kojima, Y. Fujiwara, J. Hashimoto and T. Okutani, “New Distribution Records of Vesicomyid Bivalves from Deep-Sea Chemosynthesis-Based Communities in Japanese Waters,” Venus, Vol. 59, No. 2, 2000, pp. 103-121.
[7] R. C. Vrijenhoek, “Gene Flow and Genetic Diversity in Naturally Fragmented Metapopulations of Deep-Sea Hydrothermal Vent Animals,” Journal of Heredity, Vol. 88, No. 4, 1997, pp. 285-293. doi:10.1093/oxfordjournals.jhered.a023106
[8] S. Kojima, R. Segawa, Y. Fujiwara, K. Fujikura, S. Ohta and J. Hashimoto, “Phylogeny of Hydrothermal-Vent-Endemic Gastropods Alviniconcha spp. from the Western Pacific Revealed by Mitochondrial DNA Sequences,” Biological Bulletin, Vol. 200, No. 3, 2001, pp. 298-304. doi:10.2307/1543511
[9] V. C. Kenk and B. R. Wilson, “A New Mussel (Bivalvia: Mytilidae) from Hydrothermal Vents in the Galapagos Rift Zone,” Malacologia, Vol. 26, No. 1-2, 1985, pp. 253-271.
[10] R. von Cosel, B. Métivier and J. Hashimoto, “Three New Species of Bathymodiolus (Bivalvia: Mytilidae) from Hydrothermal Vents in the Lau Basin and the North Fiji Basin, Western Pacific, and the Snake Pit Area, Mid-Atlantic Ridge,” Veliger, Vol. 37, 1994, pp. 374-392.
[11] J. Hashimoto and T. Okutani, “Four New Mytilid Mussels Associated with Deep-Sea Chemosynthetic Communities around Japan,” Venus, Vol. 53, 1994, pp. 61-83.
[12] R. von Cosel and K. Olu, “Gigantism in Mytilidae. A new Bathymodiolus from Cold Seep Areas on the Barbados Accretionary Prism,” ComptesRendus de l’Academie des Sciences Paris, Vol. 321, No. 8, 1998, pp. 655-663.
[13] R. G. Gustafson, R. D. Turner, R. A. Lutz and R. C. Vrijenhoek, “A New Genus and Five New Species of Mussels (Bivalvia: Mytilidae) from Deep-Sea Sulfide/Hydrocarbon Seeps in the Gulf of Mexico,” Malacologia, Vol. 40, No. 1-2, 1998, pp.63-112.
[14] R. von Cosel, T. Comtet and E. M. Krylova, “Bathymodiolus (Bivalvia: Mytilidae) from Hydrothermal Vents on the Azores Triple Junction and the Logatchev Hydrothermal Field, Mid-Atlantic Ridge,” Veliger, Vol. 42, 1999, pp. 218-248.
[15] J. Hashimoto, “A New Species of Bathymodiolus (Bivalvia: Mytilidae) from Hydrothermal Vent Communities in the Indian Ocean,” Venus, Vol. 60, No. 3, 2001, pp. 141-149.
[16] R. von Cosel, “A New Species of Bathymodioline Mussel (Mollusca, Bivalvia, Mytilidae) from Mauritania (West Africa), with Comments on the Genus Bathymodiolus Kenk & Wilson, 1985,” Zoosystema, Vol. 24, 2002, pp. 259-271.
[17] R. von Cosel and B. A. Marshall, “Two New Species of Large Mussels (Bivalvia: Mytilidae) from Active Submarine Volcanoes and a Cold Seep off the Eastern North Island of New Zealand, with Description of a New Genus,” Nautilus, Vol. 117, No. 2, 2003, pp. 31-46.
[18] T. Okutani, K. Fujikura and T. Sasaki, “Two New Species of Bathymodiolus (Bivalvia: Mytilidae) from Methane Seeps on the Kuroshima Knoll off Yaeyama Islands, Southwestern Japan,” Venus, Vol. 63, 2004, pp. 97-110.
[19] J. Hashimoto and M. Furuta, “A New Species of Bathymodiolus (Bivalvia: Mytilidae) from Hydrothermal Vent Communities in the Manus Basin, Papua New Guinea,” Venus, Vol. 66, No. 1-2, 2007, pp. 57-68.
[20] R. von Cosel, “A New Bathymodioline Mussel (Bivalvia: Mytiloidea: Mytilidae: Bathymodiolinae) from Vent Sites near Kueishan Island, North East Taiwan,” The Raffles Bulletin of Zoololgy, Vol. 19, 2008, pp. 105-114.
[21] R. von Cosel and R. Janssen, “Bathymodioline Mussels of the Bathymodiolus (S. L.) childressi clade from Methane Seeps near Edison Seamount, New Ireland, Papua New Guinea (Bivalvia: Mytilidae),” ArchivfürMolluskenkunde, Vol. 137, No. 2, 2008, pp. 195-224.
[22] Y. Fujita, H. Matsumoto, Y. Fujiwara, J. Hashimoto, S. V. Galkin, R. Ueshima and J.-I. Miyazaki, “Phylogenetic Relationships of Deep-Sea Bathymodiolus Mussels with Their Mytilid Relatives from Sunken Whale Carcasses and Wood,” Venus, Vol. 67, No. 3-4, 2009, pp. 123-134.
[23] J.I. Miyazaki, L. O. Martins, Y. Fujita, H. Matsumoto and Y. Fujiwara, “Evolutionary Process of Deep-Sea Bathymodiolus Mussels,” PLoS ONE, Vol. 5, No. 4, 2010, p. e10363. doi:10.1371/journal.pone.0010363
[24] J. Lorion, B. Buge, C. Cruaud and S. Samadi, “New Insights into Diversity and Evolution of Deep-Sea Mytilidae (Mollusca: Bivalvia),” Molecular Phylogenetics and Evolution, Vol. 57, No. 1, 2010, pp. 71-82. doi:10.1016/j.ympev.2010.05.027
[25] T. Koito, J. Hashimoto, S. Nemoto, M. Kitajima, M. Kitada and K. Inoue, “New Distribution Record of Deep-Sea Mussel, Bathymodiolus aduloides (Mollusca: Bivalvia: Mytilidae) from a Hydrothermal Vent, Myojinsho,” Marine Biodiversity Records, Vol. 5, 2012, pp. 1-5.
[26] R. A. Lutz, P. Bouchet, D. Jablonski, R. D. Turner and A. Warén, “Larval Ecology of Mollusks at Deep-Sea Hydrothermal Vents,” American Malacological Bulletin, Vol. 4, 1986, pp. 49-54.
[27] M. Le Pennec and P. G. Beninger, “Reproductive Characteristics and Strategies of Reducing-System Bivalves,” Comparative Biochemistry and Physiology A, Vol. 126, No. 1, 2000, pp. 1-16. doi:10.1016/S0742-8413(00)00100-6
[28] A. Kyuno, M. Shintaku, Y. Fujita, H. Matsumoto, M. Utsumi, H. Watanabe, Y. Fujiwara and J.-I. Miyazaki, “Dispersal and Differentiation of Deep-Sea Mussels of the Genus Bathymodiolus (Mytilidae, Bathymodiolinae),” Journal of Marine Biology, Vol. 2009, 2009, Article ID 625672.
[29] R. Varney, C. E. Galindo-Sánchez, P. Cruz, and P. M. Gaffney, “Population Genetics of the Eastern Oyster Crassostrea virginica (Gmelin, 1791) in the Gulf of Mexico,” Journal of Shellfish Research, Vol. 28, No. 4, 2009, pp. 855-864. doi:10.2983/035.028.0415
[30] E. A. Saillant, M. A. Renshaw, N. J. Cummings, and J. R. Gold, “Conservative Genetics and Management of Yellowtail Snapper, Ocyurus chrysurus, in the US Caribbean and South Florida,” Fisheries Management and Ecology, Vol. 19, No. 4, 2012, pp. 301-312. doi:10.1111/j.1365-2400.2011.00840.x
[31] E. McCartney-Melstad, T. Waller, P. A. Micucci, M. Barros, J. Draque, G. Amato and M. Mendez, “Population Structure and Gene Flow of the Yellow Anaconda (Eunectesnotaeus) in Northern Argentina,” PLoS ONE, Vol. 7, No. 5, 2012, p. e37473. doi:10.1371/journal.pone.0037473
[32] S. Kumar, K. Tamura and M. Nei, “MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment,” Briefings in Bioinformatics, Vol. 5, No. 2, 2004, pp. 150-163. doi:10.1093/bib/5.2.150
[33] D. L. Swofford, “PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0 Beta,” Sinauer Associates, Sunderland, 2002.
[34] M. Kimura, “A Simple Methods for Estimating Evolutionary Rate of Base Substitution through Comparative Studies of Nucleotide Sequences,” Journal of Molecular Evolution, Vol. 16, No. 2, 1980, pp. 111-120. doi:10.1007/BF01731581
[35] J. P. Huelsenbeck, F. Ronquist, R. Nielsen, and J. P. Bollback, “Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology,” Science, Vol. 294, No. 5550, 2003, pp. 2310-2314. doi:10.1126/science.1065889
[36] D. Posada and T. R. Buckley, “Model Selection and Model Averaging in Phylogenetics: Advantages of the AIC and Bayesian Approaches over Likelihood Ratio Tests,” Systematic Bioliology, Vol. 53, No. 5, 2004, pp. 793-808. doi:10.1080/10635150490522304
[37] L. Excoffier, G. Laval and S. Schneider, “Arlequin Ver. 3.0: An Integrated Software Package for Population Genetics Data Analysis,” Evolutionary Bioinformatics Online, Vol. 1, 2005, pp. 47-50.
[38] S. Schneider and L. Excoffier, “Estimation of Past Demo- graphic Parameters from the Distribution of Pairwise Dif- ferences when the Mutation Rates Vary among Sites: Application to Human Mitochondrial DNA,” Genetics, Vol. 152, No. 3, 1999, pp. 1079-1089.
[39] L. Excoffier and P. E. Smouse, “Using Allele Frequencies and Geographic Subdivision to Reconstruct Gene Trees within a Species: Molecular Variance Parsimony,” Genetics, Vol. 136, No. 1, 1994, pp. 343-359.
[40] K. Olu, A. Duperret, M. Sibuet, J.-P. Foucher and A. Fiala-Médioni, “Structure and Distribution of Cold Seep Communities along the Peruvian Active Margin: Relationship to Geological and Fluid Patterns,” Marine Ecology Progress Series, Vol. 132, 1996, pp. 109-125. doi:10.3354/meps132109
[41] J.-I. Miyazaki, M. Shintaku, A. Kyuno, Y. Fujiwara, J. Hashimoto and H. Iwasaki, “Phylogenetic Relationships of Deep-Sea Mussels of the Genus Bathymodiolus (Bivalvia: Mytilidae),” Marine Biology, Vol. 144, No. 3, 2004, pp. 527-535. doi:10.1007/s00227-003-1208-3
[42] Y. Fujiwara, K. Takai, K. Uematsu, S. Tsuchida, J. C. Hunt and J. Hashimoto, “Phylogenetic Characterization of Endosymbionts in Three Hydrothermal Vent Mussels: Influence on Host Distributions,” Marine Ecology Progress Series, Vol. 208, 2000. pp. 147-155. doi:10.3354/meps208147
[43] G. Tokuda, A. Yamada, K. Nakano, N. Arita and H. Yamasaki, “Occurrence and Recent Long-Distance Dispersal of Deep-Sea Hydrothermal Vent Shrimps,” Biological Letters, Vol. 2, No. 2, 2006, pp. 257-260. doi:10.1098/rsbl.2005.0420
[44] F. Pradillon, B. Shillito, C. M. Young and F. Gaill, “Developmental Arrest in Vent Worm Embryos,” Nature, Vol. 413, No. 6857, 2001, pp. 698-699. doi:10.1038/35099674
[45] A. G. Marsh, L. S. Mullineaux, C. M. Young and D. T. Manahan, “Larval Dispersal Potential of the Tubeworm Riftia pachyptila at Deep-Sea Hydrothermal Vents,” Nature, Vol. 411, No. 6833, 2001, pp. 77-80. doi:10.1038/35075063
[46] H. Watanabe, “Dispersal and Evolution in Chemoautosynthesis-Based Communities in the Western Pacific-Verrucomorphs as Test Species for Evolutionary Studies on Hydrothermal Vent-Endemic Animals-,” Japanese Journal of Benthology, Vol. 58, 2003, pp. 44-49.
[47] A. Taira, “Nihon-Rettou No Tanjou,” Iwanami-Shoten, Tokyo, 2003.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.