Hydrogen bonds are related to the thermal stability of 16S rRNA

Abstract

The number of base pairs in the 16S rRNA secondary structures of 51 bacterial sequences was counted, and the number of hydrogen bonds was estimated. The number of hydrogen bonds was highly correlated with the optimal growth temperature (OGT) rather than with the G + C content. Paired and unpaired nucleotides in mesophiles were compared to those in thermophiles. OGT exhibited a relationship with paired nucleotides but not with unpaired nucleotides. The total number of paired as well as unpaired nucleotides in mesophiles was very similar to that in thermophiles. However, the components in base pairs in mesophiles significantly differed from those in thermophiles. As compared with mesophiles, the number of G·C base pairs in thermophiles was high whereas that of A·U base pairs was low. In this study, we showed that hydrogen bonds are important for stabilizing 16S rRNAs at high temperatures.

Share and Cite:

Nakashima, H. , Fukuoka, A. and Saitou, Y. (2013) Hydrogen bonds are related to the thermal stability of 16S rRNA. Journal of Biomedical Science and Engineering, 6, 19-24. doi: 10.4236/jbise.2013.61003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kawashima, T., Amano, N., Koike, H., Makino, S., Higuchi, S., Kawashima-Ohya, Y., Watanabe, K., Yamazaki, M., Kanehori, K., Kawamoto, T., Nunoshiba, T., Yamamoto, Y., Aramaki, H., Makino, K. and Suzuki, M. (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proceedings of the National Academy of Sciences of the United States of America, 97, 14257-14262. doi:10.1073/pnas.97.26.14257
[2] Nakashima, H., Fukuchi, S. and Nishikawa, K. (2003) Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. The Journal of Biochemistry, 133, 507-513. doi:10.1093/jb/mvg067
[3] Galtier, N. and Lobry, J.R. (1997) Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. Journal of Molecular Evolution, 44, 632-636. doi:10.1007/PL00006186
[4] Galtier, N., Tourasse, N. and Gouy, M. (1999) A nonhyperthermophilic common ancestor to extant life forms. Science, 283, 220-221. doi:10.1126/science.283.5399.220
[5] Hurst, L.D. and Merchant, A.R. (2001) High guanine-cytosine content is not an adaptation to high temperature: A comparative analysis amongst prokaryotes. Proceeding of the Royal Society B. Biological Sciences, 268, 493-497.
[6] Wang, H.-C. and Hickey, D.A. (2002) Evidence for strong selective constraint acting on the nucleotide composition of 16S ribosomal RNA genes. Nucleic Acids Research, 30, 2501-2507. doi:10.1093/nar/30.11.2501
[7] Khachane, A.N., Timmis, K.N. and Martins dos Santos, V.A.P. (2005) Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Research, 33, 4016-4022. doi:10.1093/nar/gki714
[8] Yusupov, M.M., Yusupova, G.Z., Baucom, A., Lieberman, K., Earnest, T.N., Cate, J.H.D. and Noller, H.F. (2001) Crystal structure of the ribosome at 5.5A resolution. Science, 292, 883-896. doi:10.1126/science.1060089
[9] Brodersen, D.E., Clemons Jr., W.M., Carter, A.P., Wimberly, B.T. and Ramakrishnan, V. (2002) Crystal structure of the 30S ribosomal subunit from Thermus thermophilus: Structure of the proteins and their interactions with 16S RNA. Journal of Molecular Biology, 316, 725- 768. doi:10.1006/jmbi.2001.5359
[10] Cannone, J.J., Subra-manian, S., Schnare, M.N., Collett, J.R., D’Souza, L.M., Du, Y., Feng, B., Lin, N., Madabusi, L.V., Müller, K.M., Pande, N., Shang, Z., Yu, N. and Gutell, R.R. (2002) The comparative RNA web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics, 3, 1-31. doi:10.1186/1471-2105-3-1
[11] Cheong, C., Varani, G. and Tinoco Jr., I. (1990) Solution structure of an unusually stable RNA hairpin, 5’G-GAC(UUCG)GUCC. Nature, 346, 680-682. doi:10.1038/346680a0
[12] Gutell, R.R., J.J. Cannone, J.J., Shang, Z., Du, Y. and Serra, M.J. (2000) A story: Unpaired adenosine bases in ribosomal RNAs. Journal of Molecular Biology, 304, 335-354. doi:10.1006/jmbi.2000.4172
[13] Gutell, R.R., Lee, J.C. and Cannone, J.J. (2002) The accuracy of ribosomal RNA comparative structure models. Current Opinion in Structural Biology, 12, 301-310. doi:10.1016/S0959-440X(02)00339-1
[14] Muto, A. and Osawa, S. (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proceedings of the National Academy of Sciences of the United States of America, 84, 166-169. doi:10.1073/pnas.84.1.166
[15] Varani, G. and McClain, W.H. (2000) The G?U wobble base pair. EMBO Reports, 1, 18-23. doi:10.1093/embo-reports/kvd001

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.