Surface Modification of Titanium Plate with Anodic Oxidation and Its Application in Bone Growth

Abstract

Using implants for dental applications are well-accepted procedures as one of the solutions for periodontal defect repair. Suitable design and materials, their reaction with the surrounding hard tissues and interfacial biomechanical properties are still considered to be the primary criteria which need to be addressed. The purpose of present study was to evaluate the bone repair around pure titanium implants and porous surface using anodic oxidation technique, after their insertion in tibiae of rats (n = 15). Five animals received pure titanium-surface implants in tibia, 5 rough-surface implants (TiO2/Ti) in tibia and last five acted as control group. The interfacial integrity and compositional variation along the interface were studied using scanning electron microscope (SEM) with energy dispersive analysis of X-ray (EDX) and histopathology after 2 months. The rats were sacrificed 8 weeks after surgery and fragments of the tibiae containing the implants were submitted to histological analyses to evaluate new bone formation at the implant-bone interface as well as the tibiae were radio graphed. The SEM-EDX results confirmed the initial stability for the Ti implant, but the regeneration of new bone formation was faster in the case of TiO2/Ti implant, and hence could be used for faster healing. The results of the histological analysis showed that osseointegration occurred for both types of implants with similar quality of bone tissue. In conclusion, the porous-surface implants contributed to the osseointegration because they provide a larger contact area with surface roughness at implant-bone interface can help into the formation of physico-chemical bondage with the surrounding hard tissues.

Share and Cite:

S. Fadl-allah, M. Quahtany and N. El-Shenawy, "Surface Modification of Titanium Plate with Anodic Oxidation and Its Application in Bone Growth," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 1, 2013, pp. 74-83. doi: 10.4236/jbnb.2013.41010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. G. Olmedo, G. Duffó, R. L and Cabrini and M. B. Guglielmotti, “Local Effect of Titanium Implant Corrosion: An Experimental Study in Rats,” International Journal of Oral and Maxillofacial Surgery, Vol. 37, No. 11, 2008, pp. 1032-1038. doi:10.1016/j.ijom.2008.05.013
[2] R. M. Wazen, L.-P. Lefebvre, E. Baril and A. Nanci, “Initial Evaluation of Bone Ingrowth into a Novel Porous Titanium Coating,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 94B, No. 1, 2010, pp. 64-71.
[3] S. Abramson, H. Alexander, S. Best, J. C. Bokros, J. B. Brunski, A. Colas, S. L. Cooper, J. Curtis, A. Haubold, L. L. Hench, R. W. Hergenrother, A. S. Hoffman, J. A. Hubbell, J.A. Jansen, M. W. King, J. Kohn, M. K. Lamba, R. Langer, C. Migliaresi, R. B. More, N. A. Peppas, B. D. Ratner, S. A. Visser, A. von Recum, S. Weinberg and I. V. Yannas, “Classes of Materials Used in Medicine,” In: B. Ratner, A. Hoffman, F. Schoen and J. Lemons, Eds., Biomaterials Science, Elsevier Academic Press, San Diego, 2004, pp. 67-233.
[4] R. Adell, B. Ericksson, V. Lekholm, P. I. Br?nemark and T. Jemt, “A Long-Term Follow Up Study of Osseointegrated Implants in the Treatment of the Totally Edentulous Jaw,” International Journal of Oral and Maxillofacial Surgery, Vol. 5, No. 4, 1990, pp. 347-359.
[5] T. Albrektsson, “A Multicenter Report on Osseointegrated Oral Implants,” Journal of Prosthetic Dentistry, Vol. 60, No. 1, 1988, pp. 75-84. doi:10.1016/0022-3913(88)90355-1
[6] M. Roy, A. Bandyo-padhyay and S. Bose, “Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants,” Surface and Coatings Technology, Vol. 205, No. 8-9, 2011, pp. 2785-2792.
[7] T. Koklubo, H. M. Kim and M. Kawashita, “Novel Bioactive Materials with Different Mechanical Properties,” Biomaterials. Vol. 24, No. 13, 2003, pp. 2161-2175. doi:10.1016/S0142-9612(03)00044-9
[8] R. K. Shenk and D. Buser, “Osseointegration: A Reality,” Periodontology 2000, Vol. 17, No. 1, 1998, pp. 22-35. doi:10.1111/j.1600-0757.1998.tb00120.x
[9] B. J. Brunski, “In Vivo Bone Response to Biomechanical Loading at the Bone/Dental-Implant Interface,” Advances in Dental Research, Vol. 13, No. 1, 1999, pp. 99-119. doi:10.1177/08959374990130012301
[10] A. Bagno and C. D. Bello, “Surface Treatments and Roughness Properties of Ti-Based Biomaterials,” The Journal of Materials Science: Materials in Medicine, Vol. 15, No. 9, 2004, pp. 935-949. doi:10.1023/B:JMSM.0000042679.28493.7f
[11] P. I. Branemark, “Osseointegration and Its Experimental Background,” Journal of Prosthetic Dentistry, Vol. 50, No. 3, 1983, pp. 399-410. doi:10.1016/S0022-3913(83)80101-2
[12] R. M. Pilliar, “Overview of Surface Variability of Metallic Endosseous Dental Implants: Textured and Porous Surface-Structured Designs,” Implant Dentistry, Vol. 7, No. 4, 1998, pp. 305-314. doi:10.1097/00008505-199807040-00009
[13] O. Zinger, G. Zhao, Z. Schwartz, J. Simpson, M. Wieland, D. Landolt, et al., “Differential Regulation of Osteoblasts by Substrate Micro-structural Features,” Biomaterials, Vol. 26, No. 14, 2005, pp. 1837-1847. doi:10.1016/j.biomaterials.2004.06.035
[14] A. S. Brentel, L. M. R. de Vasconcellos, M. V. Oliveira, A. M. L. Gra?a, L. G. O. de Vasconcellos, C. A. A. Cairo and Y. R. Carvalho, “Histomorphometric Analysis of Pure Titanium Implants with Porous Surface versus Rough Surface,” Journal of Applied Oral Science, Vol. 14, No. 3, 2006, pp. 213-218. doi:10.1590/S1678-77572006000300013
[15] J. E. Ellingsen, “Surface Configurations of Dental Implants,” Periodontology 2000, Vol. 17, No. 1, 1998, pp. 36-46.
[16] B. Kasemo, “Bio-compatibility of Titanium Implants: Surface Science Aspects,” Journal of Prosthetic Dentistry, Vol. 49, No. 6, 1983, pp. 832-837. doi:10.1016/0022-3913(83)90359-1
[17] J. Svehla, P. Morberg, B. Zicat, W. Bruce, D. Sonnabend and W. R. Walsh, “Morphometric and Mechanical Evaluation of Titanium Implant Integration: Comparison of Five Surface Structures,” Biomedical Material Research, Vol. 51, No. 1, 2000, pp. 15-22. doi:10.1002/(SICI)1097-4636(200007)51:1<15::AID-JBM3>3.0.CO;2-9
[18] M. V. Oliveira, L. C. Pereira and C. A. A. Cairo, “Porous Structure Characterization in Titanium Coating for Surgical Implants,” Material Research, Vol. 5, No. 3, 2002, pp. 269-273. doi:10.1590/S1516-14392002000300009
[19] M. Ysander, R. Br?nemark, K. Olmarker and R. R. Myers, “Intramedullary Osseointegration: Development of a Rodent Model and Study of Histology and Neuropeptide Changes around Titanium Implants,” The Journal of Rehabilitation Research and Development, Vol. 38, No. 2, 2001, pp. 183-190.
[20] H. Q. Nguyen, D. A. Deporter, R. M. Pilliar, N. Valiquette and R. Yakubovich, “The Effect of Sol-Gel Formed Calcium Phosphate Coatings on Bone Ingrowth and Osteoconductivity of Porous-Surfaced Ti Alloy Implants,” Biomaterial, Vol. 25, No. 5, 2004, pp. 865-876. doi:10.1016/S0142-9612(03)00607-0
[21] F. Togni, F. Baras, M. de O. Ribas and M. O. Taha, “Histomorphometric Analysis of Bone Tissue Repair in Rabbits after Insertion of Titanium Screws under Different Torque,” Acta Cirurgica Brasileira, S?o Paulo, Vol. 26, No. 4, 2011, pp. 235-241.
[22] M. Quahtany, S. A. Fadlallah and N. S. El-Shenawy, “Microstructures and Electrochemical Behavior of Biomimetic Calcium—Phosphate Coating in Albumin Simulated Body Fluids,” International Journal of Electrochemical Science, Vol. 7, 2012, pp. 4510-4527.
[23] R. L. Cabrini, M. B. Guglielmotti and J. C. Almagro, “Histomorphometry of Initial Bone Healing around Zirconium Implants in Rats,” Implant Dentistry, Vol. 2, No. 4, 1993, pp. 264-267. doi:10.1097/00008505-199312000-00008
[24] C. Y. Yang, T. M. Lee, C. W. Yang, L. R. Chen, M. C. Wu and T. S. Lu, “The in Vitro and in Vivo Biological Responses of Plasma-Sprayed Hydroxyapatite Coatings with Post-Hydrothermal Treatment,” Journal of Biomedical Material Research, Vol. 83A, No. 2, 2007, pp. 263-271. doi:10.1002/jbm.a.31246
[25] H. E. Gruber, “Adaptations of Goldner’s Masson Trichrome Stain for the Study of Undecalcified Plastic Embedded Bone,” Biotechnic and Histochemistry, Vol. 67, No. 1, 1992, pp. 30-34. doi:10.3109/10520299209110002
[26] J. Alvarado, et al., “Biomechanics of Hip and Knee Prostheses,” Applications of Engineering Mechanics in Medicine, GED, University of Puerto Rico Mayaguez, 2003.
[27] M. Geetha, et al., “Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review,” Progress in Materials Science, Vol. 54, No. 3, 2009, pp. 397-425.
[28] M. Long and H. J. Rack, “Titanium Alloys in Total Joint Replacement—A Materials Science Perspective,” Biomaterials, Vol. 19, No. 18, 1998, pp. 1621-1639. doi:10.1016/S0142-9612(97)00146-4
[29] N. Mirhosseini, et al., “Laser Surface Micro-Texturing of Ti-6Al-4V Substrates for Improved Cell Integration,” Applied Surface Science. Vol. 253, No. 19, 2007, pp. 7738- 7743. doi:10.1016/j.apsusc.2007.02.168
[30] A. Shenhar, et al., “Surface Modification of Titanium Alloy Orthopaedic Implants via Novel Powder Immersion Reaction Assisted Coating Nitriding Method,” Materials Science & Engineering A, Structural Materials: Properties Microstructure and Processing, Vol. 268, No. 1-2, 1999, pp. 40-46.
[31] P. Budzynski, A. A. Youssef and J. Sielanko, “Surface Modification of Ti-6Al-4V Alloy by Nitrogen Ion Implantation,” Wear, Vol. 261, No. 11-12, 2006, pp. 1271-1276. doi:10.1016/j.wear.2006.03.008
[32] B. H. Lee, et al., “Effect of Surface Structure on Biomechanical Properties and Osseoinegration,” Materials Science & Engineering, Vol. 28, No. 8, 2008, pp. 1448- 1461.
[33] H. M. Kim, H. Kaneko, M. Kawashita, T. Kokubo and T. Nakamura, “Mechanism of Apatite Formation on Anodically Oxidized Titanium Metal in Simulated Body Fluid,” Key Eng Mater, Vol. 254-256, 2004, pp. 741-744. doi:10.4028/www.scientific.net/KEM.254-256.741
[34] H. M. Kim, T. Himeno, M. Kawashita, J. H. Lee, T. Kokubo and T. Nakamura, “Surface Potential Change in Bioactive Titanium Metal during the Process of Apatite Formation in Simulated Body Fluid,” Journal of Biomedical Materials Research, Vol. 67A, No. 4, 2003, pp. 1305-1309. doi:10.1002/jbm.a.20039
[35] B. Yang, M. Uchida, H. M. Kim, X. Zhang and T. Kokubo, “Preparation of Bioactive Titanium Metal via Anodic Oxidation Treatment,” Biomaterials, Vol. 25, No. 6, 2004, pp. 1003-1010. doi:10.1016/S0142-9612(03)00626-4
[36] K. Degroot, R. Geesink, C .P. A. T. Klein and P. Serekian, “Plasma Sprayed Coatings of Hydroxyapatite,” Journal of Biomedical Materials Research, Vol. 21, No. 12, 1987, pp. 1375-1381. doi:10.1002/jbm.820211203
[37] R. Mcpherson, N. Gane and T. J. Bastow, “Structural Characterization of Plasma-Sprayed Hydroxylapatite Coatings,” Journal of Materials Science Materials in Medicine, Vol. 6, No. 6, 1995, pp. 327-334.
[38] H. Kurzweg, R. B. Heimann and T. Troczynski, “Adhesion of Thermally Sprayed Hydroxyapatite-Bond-Coat Systems Meas-ured by a Novel Peel Test,” Journal of Materials Science Materials in Medicine, Vol. 9, No. 1, 1998, pp. 9-16.
[39] C. M. Lin and S. K. Yen, “Characterization and Bond Strength of Electrolytic HA/TiO2 Double Layers for Orthopedic Applications,” Journal of Materials Science Materials in Medicine, Vol. 16, No. 10, 2005, pp. 889-897.
[40] W. Chen, Y. Liu, H. S Courtney, M. Bettenga, C. M. Agrawal, J. D. Bumgardner and J. L. Ong, “In Vitro Anti-Bacterial and Biological Properties of Magnetron Co-Sputtered Silver-Containing Hydroxyapatite Coating,” Biomaterials, Vol., 27, No. 32, 2006, pp. 5512-5517. doi:10.1016/j.biomaterials.2006.07.003
[41] Z. Huan, L. E. Fratila-Apachitei, I. Apachitei and J. Duszczyk, “Porous NiTi Surfaces for Biomedical Applications,” Applied Surface Science, Vol. 258, No. 13, 2012, pp. 5244-5249. doi:10.1016/j.apsusc.2012.02.002
[42] C. Y. Chiang, S. H. Chiou, W. E.Yang, M. L. Hsu, M. C. Yung, M. L. Tsai, L. K. Chen AND H. H. Huang, “Formation of TiO2 Nano-Network on Titanium Surface Increases the Human Cell Growth,” Dental Materials, Vol. 25, No. 8, 2009, pp. 1022-1029. doi:10.1016/j.dental.2009.03.001
[43] S. A. Fadlallah and Q. Mohsen, “Characterization of Native and Anodic Oxide Films Formed on Commercial Pure Titanium Using Electrochemical Properties and Morphology Techniques,” Applied Surface Science, Vol. 256, No. 20. 2010, pp. 5849-5855. doi:10.1016/j.apsusc.2010.03.058
[44] Q. Mohsen and S. A. Fadlallah, “Improved in Corrosion Resistance of Commercial Pure Titanium for the Enhancement of Its Biocompatibility,” Materials and Corrosion, Vol. 62, No. 4, 2011, pp. 310-319.
[45] S. A. Fadl-Allah, R. M. El-Sherief and W. A. Badawy, “Electrochemical Formation and Characterization of Porous Titania (TiO2) Films on Ti,” Journal of Applied Electrochemistry, Vol. 38, No. 10, 2008, pp. 1459-1466. doi:10.1007/s10800-008-9590-7
[46] O. H Seunghan and J. N. Sungho, “Titanium Oxide Nanotubes with Controlled Morphology for Enhanced Bone Growth,” Materials Science and Engineering, Vol. C26, 2006, 1301-1306.
[47] K. C. Popat, L. Leoni, C. A. Grimes and T. A. Desai, “Influence of Engineered Titania Nanotubular Surfaces on Bone Cells,” Biomaterials, Vol. 28, No. 21, 2007, pp. 3188-3197. doi:10.1016/j.biomaterials.2007.03.020
[48] K. Anselme, M. Bigerelle, B. Noel, E. Dufresne, D. Judas, A. Iost and P. Hardouin, “Qualitative and Quantitative Study of Human Osteoblast Adhesion on Materials with Various Surface Roughnesses,” Journal of Biomedical Material Research, Vol. 49, No. 2, 2000, pp. 155-166. doi:10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J
[49] N. S. El-Shenawy, Q. Mohsen and S. A. Fadl-allah, “Oxidative Stress and Antioxidant Responses of Liver and Kidney Tissue after Implantation of Titanium or Titanium Oxide Coated Plate in Rat Tibiae,” Journal of Material Science: Material Medical, Vol. 23, No. 7, 2012, pp. 1763-1774. doi:10.1007/s10856-012-4648-9
[50] G. Meachim and D. F. Williams, “Changes in Nonosseous Tissue Adjacent to Titanium Implants,” Journal of Biomedical Material Research, Vol. 7, No. 6, 1973, pp. 555-572. doi:10.1002/jbm.820070607
[51] S. Torgersen, N. R. Gjedet, E. S. Erichsen and G. Bang, “Metal Particles and Tissue Changes Adjacent to Miniplates. A Retrieval Study,” Acta Odontologica Scandinavica, Vol. 53, No. 2, 1995, pp. 65-71. doi:10.3109/00016359509005948
[52] R. Br?nemark, “A Biomechanical Study of Osseointegration. In-Vivo Measure-ments in Rat, Rabbit, Dog and Man,” Thesis ISBN91-628-226775, Gothenburg Univesity, Gothenburg, 1996.
[53] R. M. Pilliar, “Overview of Surface Variability of Metallic Endosseous Dental Implants: Textured and Porous Surface-Structured Designs,” Implant Dentistry, Vol. 4, No. 4, 1998, pp. 305-314. doi:10.1097/00008505-199807040-00009
[54] M. Fini, L. Savarino, N. N. Aldini, L. Martini, G. Giavaresi, G. Rizzi, et al., “Biomechanical and Histomorphometric Investigations on Two Morphologically Differing Titanium Surfaces with and without Fluorhydroxyapatite Coating: An Experimental Study in Sheep Tibiae,” Biomaterials, Vol. 24, No. 19, 2003, pp. 3183-3192. doi:10.1016/S0142-9612(03)00164-9
[55] M. G. V. Junior, L. C. A. Aragones, A. C. Junior and M. Groisman, “Histomor-phometric Analyses of Hydroxya-patite-Coated and Uncoated Titanium Dental Implants in Rabbit Cortical Bone,” Implant Dentistry, Vol. 8, No. 3, 1999, pp. 295-302. doi:10.1097/00008505-199903000-00015
[56] I. Braceras, J. I. Alava, J. I. O?ate, M. Brizela, A. Garcia-Luis, N. Garagorri, et al., “Improved Osseointegration in Ion Implantation-Treated Dental Implants,” Surface Coating Technology, Vol. 158-159, 2002, pp. 28-32.
[57] C. Karabuda, P. Sandalli, S. Yalcin, D. E. Steflik and G. R. Parr, “Histologic and Histomorphometric Comparison of Immediately Placed Hydroxyapatite-Coated and Titanium Plasma-Sprayed Implants: A Pilot Study in Dogs,” International Journal of Oral and Maxillofacial Implants, Vol. 14, No. 4, 1999, pp. 510-515.
[58] K. H. Frosch, F. Barvencik, C. H. Lohmann, V. Viereck, H. Siggelkow, J. Breme, et al., “Migration, Matrix Production and Lamellar Bone Formation of Human Osteoblast-Like Cells in Porous Titanium Implants,” Cells Tissues Organs, Vol. 170, No. 4, 2002, pp. 214-227. doi:10.1159/000047925
[59] D. A. Deporter and R. N. Todes-can, “Riley Porous-SurFaced Dental Implants in the Partially Edentulous Maxilla: Assessment for Subclinical Mobility,” International Journal of Periodontics and Restorative Dentistry, Vol. 22, No. 2, 2002, pp. 184-192.
[60] O. Zinger, G. Zhao, Z. Schwartz, J. Simpson, M. Wieland, D. Landolt, et al., “Differential Regulation of Osteoblasts by Substrate Micro-structural Features,” Biomaterial, Vol. 26, No. 14, 2005, pp. 1837-1847. doi:10.1016/j.biomaterials.2004.06.035
[61] G. S. Kumar, A. Thamizhave, Y. Yokogawa, S. N. Kalkura and E. K. Girija, “Synthesis, Characterization and in Vitro Studies of Zinc and Carbonate Co-Substituted Nano-Hydroxyapatite for Biomedical Applications,” Materials Chemistry and Physics, Vol. 134, No. 2-3, 2012, pp. 1127-1135. doi:10.1016/j.matchemphys.2012.04.005
[62] X. Liu, P. K. Chu and C. Ding, “Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications,” Material Science Engineering, Vol. 47, No. 3-4. 2004, pp. 49-121. doi:10.1016/j.mser.2004.11.001
[63] N. Hansen-Algenstaedt, C. Joscheck, L. Wolfram, C. Schaefer, I. Müller, A. B?ttcher, G. Deuretzbacher, L. Wiesner, M. Leunig, P. Algenstaedt and W. Rüther, “Sequential Changes in Vessel Formation and Micro-Vascular Function during Bone Repair,” Acta Orthopaedica, Vol. 77, No. 3, 2006, pp. 429-439. doi:10.1080/17453670610046361
[64] J. C. Esteves, A. G. Borrasca, A. M. Aranega, I. R. G. Junior and O. M. Filho, “Histomorphometric Analysis of the Repair Process of Autogenous Bone Grafts Fixed at Rat Calvaria with Cyanoacrylate,” Journal of Applied Oral Science, Vol. 19, No. 5, 2011. doi:10.1590/S1678-77572011000500016

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.