Finite Element Study on the Development of Damage and Flow Characteristics in Al7075 Alloy during Ex-ECAP

Abstract

In the present study, 3D-finite element method was conducted to investigate the deformation characteristics of Al7075 alloy during integrated extrusion-equal channel angular pressing. Effective strain, strain rate, mean stress, and damage distributions were evaluated. Severe cracking was observed at Al7075 sample after extrusion-equal channel angular pressing. Finite element results show that cracking is due to the positive mean stress and damage accumulation at the top surface of sample.

Share and Cite:

M. Ghazani and B. Eghbali, "Finite Element Study on the Development of Damage and Flow Characteristics in Al7075 Alloy during Ex-ECAP," Modeling and Numerical Simulation of Material Science, Vol. 3 No. 1, 2013, pp. 27-32. doi: 10.4236/mnsms.2013.31004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Z. Valieva, N. A. Enikeeva, M. Yu. Murashkina, V. U. Kazykhanova and X. Sauvage, “On the Origin of the Extremely High Strength of Ultrafine-Grained Al Alloys Produced by Severe Plastic Deformation,” Scripta Materialia, Vol. 63, No. 9, 2010, pp. 949-952. doi:10.1016/j.scriptamat.2010.07.014
[2] M. Kawasaki, N. Balasubramanianb and T. G. Langdon, “Flow Mechanisms in Ultrafine-Grained Metals with an Emphasis on Superplasticity,” Materials Science and Engineering: A, Vol. 528, No. 21, 2011, pp. 6624-6629. doi:10.1016/j.msea.2011.05.005
[3] I. Charit and R. S. Mishra, “Low Temperature Superplasticity in a Friction-Stir-Processed Ultrafine Grained AlZn-Mg-Sc Alloy,” Acta Materialia Vol. 53, No. 15, 2005, pp. 4211-4223. doi:10.1016/j.actamat.2005.05.021
[4] K. J. Kurzydlowski, “Bulletin of the Polish Academy of Science,” Technical Sciences, Vol. 52, No. 4, 2004, pp. 301-311.
[5] A. Azushima, R. Kopp , A. Korhonen, D. Y. Yang , F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski and A. Yanagida, “Severe Plastic Deformation (SPD) Processes for Metals,” CIRP AnnalsManufacturing Technology, Vol. 57, No. 2, 2008, pp. 716735. doi:10.1016/j.cirp.2008.09.005
[6] R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer and Y. T. Zhu, “Producing Bulk UltrafineGrained Materials By Severe Plastic Deformation,” JOM, Vol. 58, No. 4, 2006, 33-39. doi:10.1007/s11837-006-0213-7
[7] S. M. Fatemi-Varzaneh and A. Zarei-Hanzaki, “Accumulative Back Extrusion (ABE) Processing as a Novel Bulk Deformation Method,” Materials Science and Engineering: A, Vol. 504, No. 1-2, 2009, pp. 104-106. doi:10.1016/j.msea.2008.10.027
[8] G. Faraji, M. Mosavi Mashhadi and H. S. Kim, “Tubular Channel Angular Pressing (TCAP) as a Novel Severe Plastic Deformation Method for Cylindrical Tubes,” Materials Letters, Vol. 65, No. 19-20, 2011, pp. 3009-3012. doi:10.1016/j.matlet.2011.06.039
[9] Z. G. Fan, H. Jiang, X. G. Sun, J. Song, X. N. Zhang and C. Y. Xie, “Microstructures and Mechanical Deformation Behaviors of Ultrafine-Grained Commercial Pure (Grade 3) Ti Processed by Two-Step Severe Plastic Deformation,” Materials Science and Engineering: A, Vol. 527 No. 1-2, 2009, pp. 45-51. doi:10.1016/j.msea.2009.07.030
[10] Y. Estrin, M. Janecek, G. I. Raab, R. Z. Valiev and A. Zi, “Severe Plastic Deformation as a Means of Producing Ultra-Fine-Grained Net-Shaped Micro Electro-Mechanical Systems Parts,” Metallurgical and Materials Transactions A, Vol. 38, No. 9, 2007, pp. 1906-1909. doi:10.1007/s11661-007-9120-y
[11] B. Mania and M. H. Paydar, “Application of Forward Extrusion-Equal Channel Angular Pressing (FE-ECAP, in Fabrication of Aluminum Metal Matrix Composites,” Journal of Alloys and Compounds, Vol. 492, No. 1-2, 2010, pp. 116-121. doi:10.1016/j.jallcom.2009.11.098
[12] M. H. Paydara, M. Reihanianb, E. Bagherpoura, M. Sharifzadeha, M. Zarinejadc and T. A. Dean, “Consolidation of Al Particles through Forward Extrusion-Equal Channel Angular Pressing (FE-ECAP),” Materials Leters, Vol. 62, No. 17-18, 2008, pp. 3266-3268. doi:10.1016/j.matlet.2008.02.038
[13] F. Kang, J. T. Wang and Y. Penga, “Deformation and Fracture during Equal Channel Angular Pressing of AZ31 Magnesium Alloy,” Materials Science and Engineering: A, Vol. 487, No. 1-2, 2008, pp. 68-73. doi:10.1016/j.msea.2007.09.063
[14] N. Q. Chinha, J. Gubiczaa, T. Czeppec, J. Lendvaia, C. Xu, R. Z. Valievd and T. G. Langdon, “Developing a Strategy for the Processing of Age-Hardenable Alloys by ECAP at Room Temperature,” Materials Science and Engineering: A, Vol. 516, No. 1-2, 2009, pp. 248-252. doi:10.1016/j.msea.2009.03.049
[15] R. B. Figueiredo, P. R. Cetlin and T. G. Langdon, “The Processing of Difficult-to-Work Alloys by ECAP with an Emphasis on Magnesium Alloys,” Acta Materialia, Vol. 55, No. 14, 2007, pp. 4769-4779. doi:10.1016/j.actamat.2007.04.043
[16] R. B. Figueiredoa, P. R. Cetlinb and T. G. Langdon, “The Evolution of Damage in Perfect-Plastic and Strain Hardening Materials Processed by Equal-Channel Angular Pressing,” Materials Science and Engineering: A, Vol. 518, No. 1-2, 2009, pp. 124-131. doi:10.1016/j.msea.2009.04.007
[17] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon, “Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials,” Scripta Materialia, Vol. 35, No. 2, 1996, pp. 143-146. doi:10.1016/1359-6462(96)00107-8
[18] D. H. Li, Y. Yang, T. Xu, H. G. Zheng, Q. S. Zhu and Q. M. Zhang, “Observation of the Microstructure in the Adiabatic Shear Band of 7075 Aluminum Alloy,” Materials Science and Engineering: A, Vol. 527 , No. 15, 2010, pp. 3529-3535. doi:10.1016/j.msea.2010.02.024
[19] R. Luri, C. J. Luis Pérez, D. Salcedo, I. Puertas, J. León, I. Pérez and J. P. Fuertes, “Evolution of Damage in AA5083 Processed by Equal Channel Angular Extrusion Using Different Die Geometries,” Journal of Materials Processing Technology, Vol. 211, No. 1, 2011, pp. 48-56.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.