Endovascular repair of type B aortic dissection: a study by computational fluid dynamics
Yi Fan, Stephen Wing-Keung Cheng, Kai-Xiong Qing, Kwok-Wing Chow
.
DOI: 10.4236/jbise.2010.39120   PDF    HTML     5,582 Downloads   10,216 Views   Citations

Abstract

Aortic dissection is a dangerous pathological condition where blood intrudes into the layers of the arterial walls, creating an artificial channel (false lumen). In the absence of thrombosis or surgical intervention, blood will enter the false lumen through the proximal tear, and join the true lumen again through a distal tear. Rupture of the weakened outer wall will result in extremely high mortality rates. Type B thoracic aortic dissection (TAD), occurring along the descending aorta, can be repaired surgically by the deployment of an endovascular stent graft, concealing the proximal entry tear. Blood might still flow into the false lumen (FL) through the distal tear. The domain of such flow should be minimized, as complete thrombosis of the FL is generally believed to be more beneficial for the patient. The dependence on the area ratios of the lumens and size of these tears is studied by computational fluid dynamics.

Share and Cite:

Fan, Y. , Cheng, S. , Qing, K. and Chow, K. (2010) Endovascular repair of type B aortic dissection: a study by computational fluid dynamics. Journal of Biomedical Science and Engineering, 3, 900-907. doi: 10.4236/jbise.2010.39120.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pedley, T.J. (1980) The fluid mechanics of large blood vessels. Cambridge University Press, Cambridge.
[2] Fung, Y.C. (1997) Biomechanics: Circulation. 2nd Edition, Springer, Berlin.
[3] Morris, L., Delassus, P., Callanan, A., Walsh, M., Wallis, F., Grace, P. and McGloughlin, T. (2005) 3–D numerical simulation of blood flow through models of the human aorta. Journal of Biomechanical Engineering– Transactions of ASME, 127(5), 767-775.
[4] Ricotta. J.J., Pagan, J., Xenos, M., Alemu, Y., Einav, S. and Bluestein, D. (2008) Cardiovascular disease management: The need for better diagnostics. Medical & Biological Engineering & Computing, 46(11), 1059-1068.
[5] El Zahab, Z., Divo, E. and Kassab, A. (2010) Minimizat- ion of the wall shear stress gradients in bypass grafts ana- stomoses using meshless CFD and genetic algorithms optimization. Computer Methods in Biomechanics and Biomedical Engineering, 13(1), 35-47.
[6] Hassani, K., Navidbakhsh, M. and Rostami, M. (2007) Modeling of the aorta artery aneurysms and renal artery stenosis using cardiovascular electronic systems. Biomedical Engineering Online, 6(1), 22-31.
[7] Qiao, A. and Liu, Y. (2008) Medical application oriented blood flow simulation. Clinical Biomechanics, 23(Suppl 1), 130- 136.
[8] Hong, J., Wei, L., Fu, C. and Tan, W. (2008) Blood flow and macromolecular transport in complex blood vessels. Clinical Biomechanics, 23(Suppl 1), 125-129.
[9] Molla, M.M., Paul, M.C. and Roditi, G. (2010) LES of additive and non–additive pulsatile flows in a model arte- rial stenosis. Computer Methods Biomechanics and Biomedical Engineering, 13(1), 105-120.
[10] Cigarroa, J.E., Isselbacher, E.M., DeSanctis, R.W. and Eagle, K.A. (1993) Diagnostic—Imaging in the evaluation of suspected aortic dissection—Old standards and new directions. New England Journal of Medicine, 328(1), 35-43.
[11] Nienaber, C.A., Fattori, R., Lund, G., Dieckmann, C., Wolf, W., von Kodolitsch, Y., Nicolas, V. and Pierangeli, A. (1999) Nonsurgical reconstruction of thoracic aortic dissection by stent-graft placement. New England Journal of Medicine, 340(20), 1539-1545.
[12] Dake, M.D., Kato, N., Mitchell, R.S., Semba, C.P., Razavi, M.K., Shimono, T., Hirano, T., Takeda, K., Ya- da, I. and Miller, D.C. (1999) Endovascular stent-graft placement for the treatment of acute aortic dissection. New England Journal of Medicine, 340(20), 1546-1552.
[13] Tsai, T.T., Schlicht, M.S., Khanafer, K., Bull, J.L., Valassis, D.T., Williams, D.M., Bergner, R. and Eagle, K.A. (2008) Tear size and location impacts false lumen pressure in an ex vivo model of chronic type B aortic dis- section. Journal of Vascular Surgery, 47(4), 844-851.
[14] Tsai, T.T., Evangelista, A., Nienaber, C.A., Myrmel, T., Meinhardt, G., Cooper, J.V., Smith, D.E., Suzuki, T., Fattori, R., Llovet, A., Froehlich, J., Hutchison, S., Dista- nte, A., Sundt, T., Beckman, J., Januzzi, J.L., Isselbacher, E.M. and Eagle, K.A. (2007) Partial thrombosis of the false lumen in patients with acute type B aortic dissection. New England Journal of Medicine, 357(4), 349-359.
[15] Giannakoulas, G., Giannoglou, G., Soulis, J., Farmakis, T., Papadopoulou, S., Parcharidis, G. and Louridas, G. (2005) A computational model to predict aortic wall str- esses in patients with systolic arterial hypertension. Med- ical Hypothesis, 65(6), 1191-1195.
[16] Gao, F., Watanabe, M. and Matsuzawa, T. (2006) Stress analysis in a layered aortic arch model under pulsatile flow. Biomedical Engineering Online, 5, 25-35.
[17] B?ckler, D., Schumacher, H., Ganten, M., von Tengg-Kobligk, H., Schwarzbach, M., Fink, C., Kauczor, H.U., Bardenheuer, H. and Allenberg, J.R. (2006) Complicati- ons after endovascular repair of acute symptomatic and chronic expanding Stanford type B aortic dissections. Jo- urnal of Thoracic and Cardiovascular Surgery, 132(2), 361- 368.
[18] Eggebrecht, H., Nienaber, C.A., Neuh?user, M., Baum- gart, D., Kische, S., Schmermund, A., Herold, U., Reh- ders, T.C., Jakob, H.G. and Erbel, R. (2006) Endovascular stent-graft placement in aortic dissection: A metaanalysis. European Heart Journal, 27(4), 489-498.
[19] Nienaber, C.A., Kische, S., Zeller, T., Rehders, T.C., Schneider, H., Lorenzen, B., Bünger, C. M. and Ince, H. (2006) Provisional extension to induce complete attachment after stent-graft placement in type B aortic dissection: The PETTICOAT concept. Journal of Endovascular Therapy, 13(6), 738-746.
[20] Wen, C.Y., Yang, A.S., Tseng, L.Y. and Chai, J.W. (2010) Investigation of pulsatile flowfield in healthy tho- racic aorta models. Annals of Biomedical Engineering, 38(2), 391-402.
[21] Marzo, A., Singh, P., Reymond, P., Stergiopulos, N., Pat- el, U. and Hose, R. (2009) Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms. Computer Methods in Biomechanics and Bio- medical Engineering, 12(4), 431-444.
[22] Balossino, R., Pennati, G., Migliavacca, F., Formaggia, L., Venezziani, A., Tuveri, M. and Dubini, G. (2009) Co- mputational models to predict stenosis growth in carotid arteries: Which is the role of boundary conditions? Com- puter Methods in Biomechanics and Biomedical Engineering, 12(1), 113-123.
[23] Lam, S.K., Fung, G. S.K., Cheng, S. W.K. and Chow, K.W. (2008) A computational study on the biomechanic- al factors related to stent-graft models in the thoracic aorta. Medical & Biological Engineering & Computing, 46(11), 1129-1138.
[24] Xu, X.Y. and Collins, M.W. (1995) Numerical modeling of blood flow in compliant arteries and arterial bifurcations. In: Power, H. Ed., Biofluid Mechanics, Computational Mechanics Publications, Southampton, 55-93.
[25] Shibeshi, S.S. and Collins, W.E. (2005) The rheology of blood flow in a branched arterial system. Applied Rheology, 15(6), 398-405.
[26] Wang, D. and Bernsdorf, J. (2009) Lattice Boltzmann simulation of steady non-Newtonian blood flow in a 3D generic stenosis case. Computer and Mathematics in Applications, 58(5), 1030-1034.
[27] Khoynezhad, A., Donayre, C.E., Omari, B.O., Kopchok, G.E., Walot, I. and White, R.A. (2009) Midterm results of endovascular treatment of complicated acute type B ao- rtic dissection. Journal of Thoracic and Cardiovascular Surgery, 138(3), 625-631.
[28] Ting, A.C.W., Cheng, S.W.K. and Ho, P. (2003) End- oluminal stent grafts for aortic diseases: Experience at a major teaching hospital in Hong Kong. Australian and New Zealand Journal of Surgery, 73(3), 100-104.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.