Analysis of a Recent Biofilter Model for Toluene Biodegradation

Abstract

This paper investigates and provides a critical analysis of the toluene biofilter model developed by Li and De Visscher. The model simulation results have been reproduced and compared with several sets of experimental data from literature. Three different model variations are considered: model with no substrate inhibition, with substrate inhibition, and with air flow rate modification. A sensitivity analysis has been performed on model to study the effect of important parameters on the removal efficiency. Model limitations and improvements have been highlighted.

Share and Cite:

M. Qasim and Z. Shareefdeen, "Analysis of a Recent Biofilter Model for Toluene Biodegradation," Advances in Chemical Engineering and Science, Vol. 3 No. 1, 2013, pp. 57-66. doi: 10.4236/aces.2013.31006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Nukunya, J. S. Debinny and T. T. Tsotsis, “Application of a Pore Network Model to a Biofilter Treating Ethanol Vapor,” Chemical Engineering Science, Vol. 60, No. 3, 2005, pp. 665-667. doi:10.1016/j.ces.2004.08.038
[2] B. V. Babu and S. Raghuvanshi, “Simulation Studies on Transient Model for Biofilter Operated in Periodic Mode,” Journal on Engineering and Technology, Vol. 1, No. 4, 2006, pp. 72-76.
[3] C. R. Soccol, et al., “Biofiltration: An Emerging Technology,” Indian Journal of Biotechnology, Vol. 2, No. 2, 2003, pp. 396-410.
[4] Z. Shareefdeen and A. A. Shaikh, “Analysis and Comparison of Biofilter Models,” Chemical Engineering Journal, Vol. 65, No. 1, 1998, pp. 55-61.
[5] J. S. Devinny and J. Ramesh, “A Phenomenological Review of Biofilter Models,” Chemical Engineering Journal, Vol. 113, No. 2-3, 2005, pp. 187-196. doi:10.1016/j.cej.2005.03.005
[6] M. Hirai, M. Ohtake and M. Shoda, “Removal Kinetics of Hydrogen Sulfide, Methanethiol and Dimethyl Sulfide by Peat Biofilters,” Journal of Fermentation Bioengineering, Vol. 70, No. 5, 1990, pp. 334-339. doi:10.1016/0922-338X(90)90145-M
[7] S. P. P. Ottengraf and A. H. C. van den Oever, “Kinetics of Organic Compound Removal from Waste Gases with a Biological Filter,” Biotechnology and Bioengineering, Vol. 25, No. 12, 1983, pp. 3089-3102. doi:10.1002/bit.260251222
[8] Z. Shareefdeen, B. C. Baltzis, Y. S. Oh and R. Bartha, “Biofiltration of Methanol Vapor,” Biotechnology and Bioengineering, Vol. 41, No. 5, 1993, pp. 512-524. doi:10.1002/bit.260410503
[9] Z. Shareefdeen and B. C. Baltzis, “Biofiltration of Toluene Vapor under Steady-State and Transient Conditions: Theory and Experimental Results,” Chemical Engineering Science, Vol. 49, No. 24, 1994, pp. 4347-4360. doi:10.1016/S0009-2509(05)80026-0
[10] M. A. Deshusses, G. Hamer and I. J. Dunn, “Behavior of Biofilters for Waste Air Biotreatment. 1. Dynamic Model Development,” Environmental Science Technology, Vol. 29, No. 4, 1995, pp. 1048-1058. doi:10.1021/es00004a027
[11] M. A. Deshusses, G. Hamer and I. J. Dunn, “Behavior of Biofilters for Waste Air Biotreatment. 2. Experimental Evaluation of a Dynamic Model,” Environmental Science Technology, Vol. 29, No. 4, 1995, pp. 1059-1068. doi:10.1021/es00004a028
[12] O. Park and I. Jung, “A Model Study Based on Experiments on Toluene Removal under High Load Condition in Biofilters,” Biochemical Engineering Journal, Vol. 28, No. 3, 2006, pp. 269-274. doi:10.1016/j.bej.2005.11.011
[13] C. P. Yang, H. Chen, W. Qu, Y. Y. Zhong, X. Zhu and M. T. Suidan, “Modeling Biodegradation of Toluene in Rotating Drum Biofilter”, Water Science Technology, Vol. 54, No. 9, 2006, pp. 137-144. doi:10.2166/wst.2006.860
[14] Q. Liao, X. Tian, R. Chen and X. Zhu, “Mathematical Model for Gas-Liquid Two-Phase Flow and Biodegradation of a Low Concentration Volatile Organic Compound (VOC) in a Trickling Biofilter,” International Journal of Heat and Mass Transfer, Vol. 51, No. 7-8, 2007, pp. 1780-1792. doi:10.1016/j.ijheatmasstransfer.2007.07.007
[15] J. Chen, Y. Jiang, H. Sha and W. Zhang, “Dynamics Model for Nitric Oxide Removal by a Rotary Drum Biofilter,” Journal of Hazardous Materials, Vol. 168, No. 2-3, 2009, pp. 1047-1052. doi:10.1016/j.jhazmat.2009.02.159
[16] G. Spigno, M. Zilli and C. Nicolella, “Mathematical Modeling and Simulation of Methanol Degradation in Biofilters,” Biochemical Engineering Journal, Vol. 19, No. 3, 2004, pp. 267-275. doi:10.1016/j.bej.2004.02.007
[17] G. Baquerizo, et al., “A Detailed Model of a Biofilter for Ammonia Removal: Model Parameters Analysis and Model Validation,” Chemical Engineering Journal, Vol. 113, No. 2-3, 2005, pp. 205-214. doi:10.1016/j.cej.2005.03.003
[18] C. Lu, K. Chang and S. Hsu, “A Model for Treating Isopropyl Alcohol and Acetone Mixtures in a Trickle-Bed Air Biofilter,” Process Biochemistry, Vol. 39, No. 12, 2004, pp. 1849-1858. doi:10.1016/j.procbio.2003.09.019
[19] K. Chmiel, et al., “Periodic Operation of Biofilters. A Concise Model and Experimental Validation,” Chemical Engineering Science, Vol. 60, No. 11, 2005, pp. 2845-2850. doi:10.1016/j.ces.2004.12.035
[20] EPA, “Chemical Summary of Toluene,” 2011. www.epa.gov/chemfact/s_toluen.txt
[21] K. Singh, R. S. Singh and S. N. Upadhyay, “Biofiltration of Toluene Using Wood Charcoal as the Biofilter Media,” Bioresource Technology, Vol. 101, No. 11, 2009, pp. 3947-3951. doi:10.1016/j.biortech.2010.01.025
[22] G. Q. Li and A. De Visscher, “Toluene Removal Biofilter Modeling,” Air and Waste Management Association, Vol. 58, No. 7, 2008, pp. 947-956. doi:10.3155/1047-3289.58.7.947
[23] A. De Visscher and O. Van Cleemput, “Simulation Model for Gas Diffusion and Methane Oxidation in Landfill Cover Soils,” Waste Management, Vol. 23, No. 7, 2003, pp. 581-591. doi:10.1016/S0956-053X(03)00096-5
[24] S. J. Pirt, “Principles of Microbe and Cell Cultivation,” Blackwell Scientific, Oxford, 1975.
[25] J. S. Devinny, M. A. Deshusses and T. S. Webster, “Biofiltration for Air Pollution Control,” CRC Press, Boca Raton, 1999.
[26] J. B. S. Haldane, “Enzymes,” Longmans, Green, New York, 1930.
[27] M. O. Pereira, M. Kuehn, S. Wuertz, T. Neu and L. F. Melo, “Effect of Flow Regime on the Architecture of a Pseudomonas Fluorescens Biofilm,” Biotechnology and Bioengineering, Vol. 78, No. 2, 2002, pp. 164-171. doi:10.1002/bit.10189
[28] S. M. Zamir, R. Halladj and B. Nasernejad, “Removal of Toluene Vapors using a Fungal Biofilter under Intermittent Loading,” Process Safety and Environmental Protection, Vol. 89, No. 1, 2011, pp. 8-14. doi:10.1016/j.psep.2010.10.001
[29] A. Aizpuru, B. Dunat, P. Christen, R. Auria, I. Garc?a-Pena and S. Revah, “Fungal Biofiltration of Toluene on Ceramic Rings,” Journal of Environmental Engineering, Vol. 131, No. 3, 2005, pp. 396-402. doi:10.1061/(ASCE)0733-9372(2005)131:3(396)
[30] L. F. Bautista, A. Aleksenko, M. Hentzer, A. Santerre-Henriksen and J. Nielsen, “Antisense Silencing of the CreA Gene in Aspergillus Nidulans,” Applied and Environmental Microbiology, Vol. 66, No. 10, 2000, pp. 4579-4581. doi:10.1128/AEM.66.10.4579-4581.2000
[31] M. Carlsen, A. B. Spohr, J. Nielsen and J. Villadsen, “Morphology and Physiology of an α-Amylase Producing Strain of Aspergillus Oryzae during Batch Cultivations,” Biotechnology and Bioengineering, Vol. 49, No. 3, 1996, pp. 266-276. doi:10.1002/(SICI)1097-0290(19960205)49:3<266::AID-BIT4>3.0.CO;2-I
[32] T. D. Reynolds and P. A. Richards, “Unit Operations and Processes in Environmental Engineering,” 2nd Edition, PWS Press, Boston, 1996.
[33] “EPA Online Tools for Site Assessment Calculations— Estimated Henry’s Law Constant-OSWER Method,” U.S. Environmental Protection Agency, 2011. http://www.epa.gov/ATHENS/learn2model/part-two/onsite/esthenry.html
[34] K. F. Reardon, D. C. Mosteller and J. D. Bull Rogers, “Biodegradation Kinetics of Benzene; Toluene, and Phenol as Single and Mixed Substrates for Pseudomonas Putida F1,” Biotechnology & Bioengineering, Vol. 69, No. 4, 2000, pp. 385-400. doi:10.1002/1097-0290(20000820)69:4<385::AID-BIT5>3.0.CO;2-Q
[35] R. Mirpuri, W. Jones and J. D. Bryers, “Toluene Degradation Kinetics for Planktonic and Biofilm: Growth Cells of Pseudomonas putida 54G,” Biotechnology and Bioengineering, Vol. 53, No. 6, 1997, pp. 535-546. doi:10.1002/(SICI)1097-0290(19970320)53:6<535::AID-BIT1>3.0.CO;2-N
[36] Y. B. Choi, J. Y. Lee and H. S. Kim, “A Novel Bioreactor for the Biodegradation of Inhibitory Aromatic Solvents: Experimental Results and Mathematical Analysis,” Biotechnology and Bioengineering, Vol. 40, No. 11, 1992, pp. 1403-1411. doi:10.1002/bit.260401115
[37] F. X. Prenafeta-Bold, A. Kuhn, D. M. A. M. Luykx, H. Anke, J. W. Van Groenestijn and J. A. M. De Bont, “Isolation and Characterization of Fungi Growing on Volatile Aromatic Hydrocarbons as Their Sole Carbon and Energy Source,” Mycological Research, Vol. 105, No. 4, 2001, pp. 477-484. doi:10.1017/S0953756201003719
[38] A. Vergara-Fernandez, L. L. Molina, N. A. Pulido and G. Aroca, “Effects of Gas Flow Rate, Inlet Concentration and Temperature on the Biofiltration on Toluene Vapors,” Journal of Environmental Management, Vol. 84, No. 2, 2007, pp. 115-122. doi:10.1016/j.jenvman.2006.04.009
[39] S. M. Maliyekkal, E. R. Rene, L. Philip and T. Swaminathan, “Performance of BTX Degraders under Substrate Versatility Conditions,” Journal of Hazardous Materials, Vol. 109, No. 1-3, 2004, pp. 201-211. doi:10.1016/j.jhazmat.2004.04.001

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.