Kruskal Coordinates and Mass of Schwarzschild Black Holes: No Finite Mass Black Hole at All

Download Download as PDF (Size:254KB)  HTML   XML  PP. 236-248  
DOI: 10.4236/ijaa.2012.24031    2,539 Downloads   5,056 Views   Citations
Author(s)    Leave a comment


When one presumes that the gravitational mass of a neutral massenpunkt is finite, the Schwarzschild coordinates appear to fail to describe the region within the event horizon (EH), of a Schwarzschild Black Hole (SBH). Accordingly, the Kruskal coordinates were invented to map the entire spacetime associated with the SBH. But it turns out that at the EH (Mitra, IJAA, 2012), and the radial timelike geodesic of a point particle would become null. Physically this would mean that, the EH is the true singularity, i.e., M = 0, and this zero mass BH could only be a limiting static solution which must never be exactly realized. However, since in certain cases , here we evaluate this derivative in such cases, and find that, for self-consistency, one again must have at the EH. This entire result gets clarified by noting that the integration constant appearing in the vacuum Schwarzschild solution (and not for a finite object like the Sun or a planet), is zero (Mitra, J. Math. Phys., 2009). Thus though the Schwarzschild solution for a point mass is formally correct even for a massenpunkt, such a point mass or a BH cannot be formed by physical gravitational collapse. Instead, physical gravitational collapse may result in finite hot quasistatic objects asymptotically approaching this ideal mathematical limit (Mitra & Glendenning, MNRAS Lett. 2010). Indeed the discussion of physical behavior of black holes, classical or quantum, is only of academic interest (Narlikar & Padmanbhan, Found. Phys. 1989).

Cite this paper

A. Mitra, "Kruskal Coordinates and Mass of Schwarzschild Black Holes: No Finite Mass Black Hole at All," International Journal of Astronomy and Astrophysics, Vol. 2 No. 4, 2012, pp. 236-248. doi: 10.4236/ijaa.2012.24031.


[1] A. Mitra, “Why Gravitational Contraction Must Be Accompanied by Emission of Radiation in Both Newtonian and Einstein Gravity,” Physical Review D, Vol. 74, No. 2, 2006, Article ID: 024010. doi:10.1103/PhysRevD.74.024010
[2] A. Mitra, “Non-Occurrence of Trapped Surfaces and Black Holes in Spherical Gravitational Collapse: An Abridged Version,” Foundations of Physics Letters, Vol. 13, 2000, p. 543.
[3] A. Mitra, “On the Final State of Spherical Gravitational Collapse,” Foundations of Physics Letters, Vol. 15, No. 5, 2002, pp. 439-471.
[4] D. M. Eardley and L. Smarr, “Time Functions in Numerical Relativity: I. Marginally Bound Dust Collapse,” Phyical Review D, Vol. 19, 1979, pp. 2239-2259.
[5] J. R. Oppenheimer and H. Snyder, “On Continued Gravitational Contraction,” Physical Review, Vol. 56, 1939, pp. 455-459. doi:10.1103/PhysRev.56.455
[6] C. W. Misner, K. S. Thorne and J. Wheeler, “Gravitation,” Freeman, San Fransisco, 1973.
[7] S. L. Shapiro and S. A. Teukolsky, “Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects,” Wiley, New York, 1983. doi:10.1002/9783527617661
[8] A. Mitra, “Kruskal Dynamics for Radial Geodesics,” International Journal for Astronomy & Astrophysics, Vol. 2, No. 3, 2012, pp. 174-179. doi:10.4236/ijaa.2012.23021
[9] M. D. Kruskal, “Maximal Extension of Schwarzschild Metric,” Physical Review, Vol. 119, No. 5, 1960, pp. 1743-1745. doi:10.1103/PhysRev.119.1743
[10] P. Szekeres, “On the Singularities of a Riemannian Manifold,” Mathematicae Debrecen, Vol. 7, 1960, p. 285.
[11] P. Crawford and I. Tereno, “Generalized Observers and Velocity Measurements in General Relativity,” General Relativity and Gravitation, Vol. 34, No. 12, 2002, pp. 2075-2088. doi:10.1023/A:1021131401034
[12] S. Chakraborty, “Observers and Velocity Measurements in Static Spherically Symmetric Space-time: A General Relativistic Prescription,” 2012. arXiv:1210.1569v1
[13] B. Mukhopadhyay and A. R. Prasanna, “Fluid Flow and Inertial Forces in Black Hole Space-Times,” International Journal of Modern Physics A, Vol. 18, No. 7, 2003, pp. 1091-1106. doi:10.1142/S0217751X03012278
[14] A. Mitra, “On the Nature of the Compact Condensations at the Centre of Galaxies,” Bulletin of the Astronomical Society of India, Vol. 30, 2002, pp. 173-182.
[15] A. Mitra, “On the Question of Trapped Surfaces and Black Holes,” 2001. arXiv:astro-ph/0105532
[16] R. Doran, F. S. N. Lobo and P. Crawford, “Interior of a Schwarzschild Black Hole Revisited,” Foundations of Physics, Vol. 38, No. 2, 2008, pp.160-187. doi:10.1007/s10701-007-9197-6
[17] N. Rosen, “The Nature of the Schwarzschild Singularity,” In: M. Carmeli, S. I. Fickler and L. Witten, Eds., Relativity, Plenum Press, New York, 1970.
[18] A. Einstein, “On a Stationary System with Spherical Symmetry Consisting of Many Gravitating Masses,” Annals of Mathematics, Vol. 40, No. 4, 1939, pp. 922-936. doi:10.2307/1968902
[19] S. Weinberg, “Gravitation and Cosmology: Principles and Applications of General Theory of Relativity,” John Wiley, New York, 1972.
[20] H. A. Buchdahl, “General Relativistic Fluid Spheres,” Physical Review, Vol. 116, No. 4, 1959, pp. 1027-1034. doi:10.1103/PhysRev.116.1027
[21] A. Mitra, “A Generic Relation between Baryonic and Radiative Energy Densities of Stars,” Monthly Notices of the Royal Astronomical Society: Letters, Vol. 367, No. 1, 2006, pp. L66-L68. doi:10.1111/j.1745-3933.2006.00141.x
[22] A. Mitra, “Radiation Pressure Supported Stars in Einstein Gravity: Eternally Collapsing Objects,” Monthly Notices of the Royal Astronomical Society, Vol. 369, No. 1, 2006, pp. 492-496. doi:10.1111/j.1365-2966.2006.10332.x
[23] A. Mitra, “Sources of stellar energy, Einstein Eddington Timescale of Gravitational Contraction and Eternally Collapsing Objects,” New Astronomy, Vol. 12, No. 2, 2006, pp. 146-160. doi:10.1016/j.newast.2006.08.001
[24] F. Hoyle and W. A. Fowler, “Nature of Strong Radio Sources,” Nature, Vol. 197, 1963, pp. 533-535. doi:10.1038/197533a0
[25] F. Hoyle and W.A. Fowler, “On the Nature of Strong Radio Sources,” Monthly Notices of the Royal Astronomical Society, Vol. 125, 1963, p. 169
[26] C. Corda, D. Leiter, H. Mosquera Cuesta, S. Robertson and R. E. Schild, “Farewell to Black Hole Horizons and Singularities?” Journal of Cosmology, Vol. 17, 2011, p. 13. arXiv:1111.4927
[27] A. Mitra, “No Uniform Density Star in General Relativity,” Astrophysics and Space Science, Vol. 333, No. 1, 2010, pp. 169-174. doi:10.1007/s10509-010-0567-8
[28] A. Mitra, “The Fallacy of Oppenheimer Snyder Collapse: No General Relativistic Collapse at All, No Black Hole, No Physical Singularity,” Astrophysics and Space Science, Vol. 332, No. 1, 2011 pp. 43-48. doi:10.1007/s10509-010-0578-5
[29] A. Mitra, “The Mass of the Oppenheimer Snyder Black Hole,” International Journal of Astronomy & Astrophysics, 2012 (in press).
[30] W. Rindler, “Relativity, Special, General and Cosmological,” Oxford University Press, Oxford, 2008.
[31] A. Mitra, “Quantum Information Paradox: Real or Fictitious?” Pramana, Vol. 73, 2009, pp. 615-620. doi:10.1007/s12043-009-0113-9
[32] A. Mitra, “Black Holes or Eternally Collapsing Objects: A Review of 90 Years of Misconceptions,” In P. V. Kreitler, Ed., Focus on Black Hole Research, Nova, New York, 2006.
[33] M. Kriele, “A Bound on the Concentration O Matter in Spherically Symmetric Stars & Its Application for the Existence of Black-Holes,” Rendiconti del Seminario Matematico Università e Politecnico di Torino, Vol. 50, 1992.
[34] N. Pant, R. N. Mehta and B. C. Tewari, “Relativistic Model of Radiating Massive Fluid Sphere,” Astrophysics and Space Science, Vol. 327, No. 2, 2010, pp. 279-283. doi:10.1007/s10509-010-0320-3
[35] G. Pinheir and R. Chan, “Radiating Gravitational Collapse with Shear Viscosity Revisited,” General Relativity and Gravitation, Vol. 40, No. 10, 2008, pp. 2149-2175. doi:10.1007/s10714-008-0622-8
[36] A. Mitra and N. K. Glendenning, “Likely Formation of General Relativistic Radiation Pressure Supported Stars or Eternally Collapsing Objects,” Monthly Notices of the Royal Astronomical Society: Letters, Vol. 404, No. 1, 2010, pp. L50-L54. doi:10.1111/j.1745-3933.2010.00833.x
[37] J. L. Anderson & R. Gautreau, “Possible Causal Violations at Radii Greater Than the Schwarzschild Radii,” Physics Letters, Vol. 20, No. 1, 1966, p. 24. doi:10.1016/0031-9163(66)91032-8
[38] F. J. Belinfante, “Kruskal Space without Wormholes,” Physics Letters, Vol. 20, No. 1, 1966, p. 25. doi:10.1016/0031-9163(66)91033-X
[39] R. Gautreau, “Incompleteness of Kruskal?Szekers Spacetime,” International Journal of Modern Physics A, Vol. 14, No. 16, 1999, p. 2593. doi:10.1142/S0217751X99001299
[40] S. Antoci and D. E. Liebscher, “The Topology of Schwarzschild’s Solution and the Kruskal Metric,” 2003. arXiv:gr-qc/0308005
[41] A. Mitra, “Revisiting the Old Problem of General-Relativistic Adiabatic Collapse of a Uniform-Density Self-Gravitating Sphere,” Gravitation & Cosmology, Vol. 18, No. 1, 2012, pp. 17-21. doi:10.1134/S0202289312010148
[42] A. Mitra, “Interpretational Conflicts between the Static and Non-Static Forms of the de Sitter Metric,” Scientific Reports 2, 2012, Article Number: 923. doi:10.1038/srep00923
[43] P. A. M. Dirac, “Particles of Finite Size in the Gravitational Field,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 270, No. 1342, 1962, pp. 354-356.
[44] V. V. Kiselev, A. A. Logunov and M. A. Mestvirishvili, “The Physical Inconsistency of the Schwarzschild and Kerr Solutions,” Theoretical and Mathematical Physics, Vol. 164, No. 1, 2010, pp. 972-975. doi:10.1007/s11232-010-0077-4
[45] J. V. Narlikar and T. Padmanabhan, “The Schwarzschild Solution: Some Conceptual Difficulties,” Foundations of Physics, Vol. 18, No. 6, 1989, pp. 659-668. doi:10.1007/BF00734568
[46] L. Bel, “Schwarzschild Singularity,” Journal of Mathematical Physics, Vol. 10, No. 8, 1969 pp. 1501-1503. doi:10.1063/1.1664997
[47] A. Mitra, “Comments on the Euclidean Gravitational Action as Black Hole Entropy, Singularities, and Space Time Voids,” Journal of Mathematical Physics, Vol. 50, No. 4, 2009, Article ID: 042502. doi:10.1063/1.3118910
[48] A. Mitra, “On the Non-Occurrence of Type I X-Ray Bursts from the Black Hole Candidates,” Advances in Space Research, Vol. 38, No. 12, 2006, pp. 2917-2919. doi:10.1016/j.asr.2006.02.074
[49] S. L. Robertson and D. J. Leiter, “Evidence for Intrinsic Magnetic Moments in Black Hole Candidates,” The Astrophysical Journal, Vol. 565, No. 1, 2002, pp. 447-454. doi:10.1086/324479
[50] S. L. Robertson and D. J. Leiter, “On the Origin of the Universal Radio-X-Ray Luminosity Correlation in Black Hole Candidates,” Monthly Notices of the Royal Astronomical Society, Vol. 350, No. 4, 2004, pp.1391-1396. doi:10.1111/j.1365-2966.2004.07741.x
[51] S. L. Robertson and D. J. Leiter, “On Intrinsic Magnetic Moments in Black Hole Candidates,” The Astrophysical Journal, Vol. 596, No. 2, 2003, L203-L206. doi:10.1086/379602
[52] S. L. Robertson and D. J. Leiter, “Does Sgr A* Have an Event Horizon or a Magnetic Moment?” Journal of Cosmology, Vol. 6, 2010, pp. 1438-1472.
[53] R. E. Schild, D. J. Leiter and S. L. Robertson, “Observations Supporting the Existence of an Intrinsic Magnetic Moment inside the Central Compact Object within the Quasar Q0957 + 561,” Astronomical Journal, Vol. 132, No. 1, 2006, pp. 420-432. doi:10.1086/504898
[54] R. E. Schild, D. J. Leiter and S. L. Robertson, “Direct Microlensing-Reverberation Observations of the Intrinsic Magnetic Structure of Active Galactic Nuclei in Different Spectral States: A Tale of Two Quasars,” Astronomical Journal, Vol. 135, No. 3, 2008, p. 947. doi:10.1088/0004-6256/135/3/947
[55] J. Lovegrove, R. E. Schild and D. J. Leiter, “Discovery of Universal Outflow Structures above and below the Accretion Disc Plane in Radio-Quiet Quasars,” Monthly Notices of the Royal Astronomical Society, Vol. 412, No. 4, 2011, pp. 2631-264. doi:10.1111/j.1365-2966.2010.18082.x
[56] A. Mitra and K. D. Krori, “Why No Energy Can Be Extracted from Rotating Kerr Black Holes,” Journal of Cosmology, Vol. 17. 2011, p. 7604.
[57] A. Mitra, “General Relativistic Radiation Pressure Supported Stars as Quasar Central Engines in an Universe Which is Recycling Matter,” Journal of Cosmology, Vol. 17, 2011, p.7376
[58] S. S. Doeleman, et al., “Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87,” Science, Vol. 338, No. 6105, 2012, pp. 355-358. doi:10.1126/science.1224768
[59] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, “Black Holes: Complementarity or Firewalls?” 2012. arXiv:1207.3123
[60] E. P. Verlinde, “On the Origin of Gravity and the Laws of Newton,” Journal High Energy Physics, Vol. 2011, 2011, p. 29. doi:10.1007/JHEP04(2011)029
[61] T. Padmanabhan, “Thermodynamical Aspects of Gravity: New Insights,” Reports on Progress in Physics, Vol. 73, No. 4, 2010, Article ID: 046901. doi:10.1088/0034-4885/73/4/046901

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.