The Technology for Preparation of Generic (Monoenantiomeric) Antimalarial Drug Primaquine by Using Supercritical Fluid Chromatography. Separation of Primaquine from Quinocide: Simultaneous Resolution of the Enantiomers of Primaquine and Their Separation from Quinocide in One Run

Abstract

Malaria is one of the most harmful diseases on the globe. According to the World Health Organization (WHO), several million people die every year from malaria, and most of them are children. Hundreds of millions of fresh cases of ma- laria are registered by the WHO every year, and more than one-third of the earth’s population lives in malaria-endemic areas. Primaquine is an important antimalarial drug because it has gametocytocidal properties and prevents relapse in most cases. However, primaquine is a highly toxic substance, especially to the Negroid race (in Africa, Australia and North, Latin and South America) and some others. Negroid male children are most vulnerable to the toxic effects of primaquine. The toxicity of primaquine can be enhanced in mixtures with other antimalarial drugs. In the present study, unprocessed primaquine and primaquine tablets highly contaminated with quinocide (I. Brondz, Historical Overview of Chromatography and Related Techniques in Analysis of Antimalarial Drug Primaquine (Editor I. Brondz), Nova Sci- ence Publishers, Inc. (2011) ISSN 978-1-61761-944-1) are discussed versus monoenantiomeric primaquine as a drug. The contamination of primaquine with quinocide enhances the toxicity of primaquine by additive or synergistic action. The use of contaminated primaquine can be harmful. Development of a useful antimalarial vaccine can take a decade or longer. This paper describes the possibility of preparing antimalarial generic monoenantiomeric primaquine, free of both quinocide contamination and the ineffective enantiomer of primaquine, using fractionation by supercritical fluid chromatography equipped with a new experimental High Resolution Isomer Column (HRIC). By this approach, it is pos- sible to produce a significant amount of pharmacologically active enantiomer of primaquine at relatively low cost for a broad range of patients sensitive to contaminated primaquine. Leading pharmacopoeias should no longer deny the pre- sence of the toxic contaminant quinocide in relatively high concentrations in unprocessed primaquine and in prima- quine tablets. New standards for antimalarial primaquine diphosphate tablets must be adopted in pharmacopoeias and by the pharmaceutical industry.

Share and Cite:

I. Brondz and A. Brondz, "The Technology for Preparation of Generic (Monoenantiomeric) Antimalarial Drug Primaquine by Using Supercritical Fluid Chromatography. Separation of Primaquine from Quinocide: Simultaneous Resolution of the Enantiomers of Primaquine and Their Separation from Quinocide in One Run," American Journal of Analytical Chemistry, Vol. 3 No. 12A, 2012, pp. 884-890. doi: 10.4236/ajac.2012.312A117.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. W. Tracy, L. T. Webster, “Drugs Used in the Chemotherapy of Protozoal Infections,” In: J. G. Hardman and L. E. Limbird, Eds., The Pharmacological Basis of Therapeutics, 9th Edition, McGraw-Hill Book Co., New York, 1996, pp. 987-1008.
[2] I. Brondz, D. Mantzeilas, U. Klein, M. N. Lebedeva, F. S. Mikhailitsyn, G. D. Souleimanov and D. Ekeberg, “The Main Contaminant of the Antimalarial Drug Primaquine Is Its Positional Isomer,” The 3rd International Symposium on Separation in BioSciences SBS 2003, A 100 Years of Chromatography, Moscow, 13-18 May 2003, p. 165.
[3] British Pharmacopoeia, Her Majesty’s Stationery Office (HMSO), London, Vol. 1, 1988, p. 462.
[4] British Pharmacopoeia, Her Majesty’s Stationery Office (HMSO), London, 1990, p. 1252 (Addendum).
[5] British Pharmacopoeia, Her Majesty’s Stationery Office (HMSO), London, Vol. 1, 1993, p. 541.
[6] British Pharmacopoeia, Her Majesty’s Stationery Office (HMSO), London, 1997, p. 2015 (Addendum).
[7] British Pharmacopoeia, Her Majesty’s Stationery Office (HMSO), London, Vol. 1, 2000, p. 1285.
[8] European Pharmacopoeia, 3rd Edition, Council of Europe, Strasbourg, 1997.
[9] European Pharmacopoeia, 3rd Edition, Council of Europe, Strasbourg, 2001.
[10] I. Brondz, D. Mantzilas, U. Klein, D. Ekeberg, E. Hvattum, M. N. Lebedeva, F. S. Mikhailitsyn, G. D. Souleimanov and J. R?e, “Nature of the Main Contaminant in the Antimalarial Drug Primaquine Diphosphate: A Qualitative Isomer Analysis,” Journal of Chromatography B, Vol. 800, No. 1-2, 2004, pp. 211-223. doi:10.1016/j.jchromb.2003.09.042
[11] I. Brondz, U. Klein, D. Ekeberg, D. Mantzilas, E. Hvattum, H. Schultz and F. S. Mikhailitsyn, “Nature of the Main Contaminant in the Anti-Malaria Drug Primaquine Diphosphate: GC-MS Analysis,” International Symposium Analytical Forum, Warsaw, 4-8 July, 2004, p. 154.
[12] I. Brondz, U. Klein, D. Ekeberg, D. Mantzilas, E. Hvattum, H. Schultz and F. S. Mikhailitsyn, “Nature of the Main Contaminant in the Drug Primaquine Diphosphate: GC-MS Analysis,” Asian Journal of Chemistry, Vol. 17, No. 3, 2005, pp. 1678-1688.
[13] I. Brondz and U. Klein, “Separation of the Positional Isomer Quinocide from the Antimalarial Drug Primaquine Using a Discovery? HS-F5 HPLC Column,” The Reporter, Vol. 23, No. 4, 2005, p. 1.
[14] I. Brondz, D. Ekeberg, L. Karaliova, I. Jennings, J. A. Hustad and R. Svendsen, “Separation of the Positional Isomer Quinocide from the Anti-Malaria Drug Primaquine Using a Discovery HS-F5 HPLC Column,” Trends in Chromatography, Vol. 1, 2005, pp. 78-81.
[15] I. Brondz and U. Klein, “Separation of the Positional Isomer Quinocide from the Anti-Malarial Drug Primaquine Using a Discovery? HS-F5 HPLC Column,” The Reporter EU, Vol. 19, 2006, p. 3.
[16] I. Brondz, D. Ekeberg, D. S. Bell, J. A. Hustad, R. Svendsen, V. Vlachos, P. Oakley, G. J. Langley, T. Mohini, C.-G. Amaury and F. Mikhalitsyn, “Nature of the Main Contaminant in the Drug Primaquine Diphosphate: SFC and SFC-MS Methods of Analysis,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 43, No. 3, 2007, pp. 937-944. doi:10.1016/j.jpba.2006.09.017
[17] I. Brondz, D. Ekeberg, A. R. Annino and T. Palcic, “SFC-MS Analyses of Anti-Malaria Drug Primaquine Diphosphate. Comparison of Techniques and Instrumentation,” The 12th Norwegian MS Winter Meeting, Hafjell, 21-24 January 2007, p. 42.
[18] I. Brondz, A. B. Fialkov and A. Amirav, “Analysis of Quinocide in Unprocessed Primaquine Diphosphate and Primaquine Diphosphate Tablets Using Gas Chromatography—Mass Spectrometry with Supersonic Molecular Beams,” Journal of Chromatography A, Vol. 1216, No. 5, 2009, pp. 824-829. doi:10.1016/j.chroma.2008.11.043
[19] I. Brondz, “SFC-MS Analysis of Contaminants in Primaquine Diphosphate Tablets and Spectral UV and NMR Characterizing of Primaquine and Quinocide,” In: E. Csizmadia and I. Kalnoky, Eds., Antimalarial Drugs: Costs, Safety and Efficacy, Nova Science Publishers, Inc., New York, 2009, pp. 105-124.
[20] I. Brondz, “Improved Separation of Quinocide in Primaquine Analysis by Supercritical Fluid Chromatography-Mass Spectrometry,” The 5th Conference Nordic Separation Science Society, Tallinn, 26-29 August, 2009, p. 6.
[21] I. Brondz, “SFC-MS Analysis of Contaminants in Primaquine Diphosphate Tablets and Spectral UV and NMR Characterizing of Primaquine and Quinocide,” The 5th Conference Nordic Separation Science Society, Tallinn, 26-29 August, 2009, p. 7.
[22] I. Brondz, “Historical Overview of Chromatography and Related Techniques in Analysis of Anti-Malarial Drug Primaquine,” In: T. J. Quintin, Ed., Chromatography: Types, Techniques and Methods, Nova Science Publishers, Inc., New York, 2010, pp. 281-322.
[23] I. Brondz, “Historical Overview of Chromatography and Related Techniques in Analysis of Antimalarial Drug Primaquine,” Nova Science Publishers, Inc., New York, 2011.
[24] A. A. Elbashir, B. Saad, A. S. M. Ali, M. I. Saleh and H. Y. Aboul-Enein, “Enantioselective Analysis of Primaquine and Its Impurity Quinocide by Capillary Electrophoresis,” Biomedical Chromatography, Vol. 23, No. 3, 2008 pp. 295-301. doi:10.1002/bmc.1113
[25] D. D. Sin and S. D. Shafran,” Dapsone and Primaquine— Induced Methemoglobinemia in HIV-Infected Individuals,” Journal of Acquired Immune Deficiency Syndromes, Vol. 12, No. 5, 1996, pp. 477-481. doi:10.1097/00042560-199608150-00006
[26] M. D. Coleman and N. A. Coleman, “Drug-Induced Methemoglobinemia—Treatment Issues,” Drug Safety, Vol. 14, No. 6, 1996, pp. 394-405. doi:10.2165/00002018-199614060-00005
[27] T. C. Marrs, J. E. Bright and B. C. Morris, “Methemoglobinogenic Potential of Primaquine and Its Mutagenicity in the Ames Test,” Toxicology Letters, Vol. 36, No. 3, 1987, pp. 281-287. doi:10.1016/0378-4274(87)90197-4
[28] G. S. Kantor, “Primaquine-Induced Methemoglobinemia During Treatment of Pneumocytis-Carinii Pneumonia,” New England Journal of Medicine, Vol. 327, No. 20, 1992, pp. 1491-1462.
[29] R. Allahyari, A. Strother, I. M. Fraser and A. J. Verbiscar, “Synthesis of Certain Hydroxy Analogues of the Antimalarial Drug Primaquine and Their in vitro Methemoglobin-Producing and Glutathione-Depleting Activity in Human Erythrocytes,” Journal of Medicinal Chemistry, Vol. 27, No. 3, 1984, pp. 407-410.
[30] R. I. Wed, “Effects of Primaquine on the Red Blood Cell Membrane. II. K+ Permeability in Glucose-6-Phosphate Dehydrogenase Deficient Erythrocytes,” Journal of Clinical Investigation, Vol. 40, No. 1, 1961, pp. 140-143. doi:10.1172/JCI104227
[31] R. W. Kellermeyer, P. E. Carson, S. L. Schrier, A. R. Tarlov and A. S. Alving, “The Hemolytic Effect of Primaquine. XIV. Pentose Metabolism in Primaquine-Sensitive Erythrocytes,” Journal of Laboratory and Clinical Medicine, Vol. 58, 1961, pp. 715-724.
[32] R. J. Dern, E. Beutler and A. S. Alving, “The Hemolytic Effect of Primaquine V. Primaquine Sensitivity as a Manifestation of a Multiple Drug Sensitivity,” Journal of Laboratory and Clinical Medicine, Vol. 97, No. 6, 1981, pp. 750-759.
[33] I. G. Schmidt and L. H. Schmidt, “Neurotoxicity of the 8-Aminoquinolines. I. Lesions in the Central Nervous System of the Rhesus Monkey Induced by Administration of Plasmocid,” Journal of Neuropathology & Experimental Neurology, Vol. 7, No. 4, 1948, pp. 368-398. doi:10.1097/00005072-194810000-00002
[34] I. G. Schmidt and L. H. Schmidt, “Neurotoxicity of the 8-Aminoquinolines. II. Reactions of Various Experimental Animals to Plasmocid,” Journal of Neuropathology & Experimental Neurology, Vol. 91, No. 3, 1948, pp. 337-367.
[35] D. Bullimore, “The Role of Polyamines in Hepatic Encephalopathy and Cerebral Oedema,” European Journal of Gastroenterology & Hepatology, Vol. 5, No. 2, 1993, pp. 63-67.
[36] A. M. R?nn, J. R?nne-Rasmussen, P. C. G?tzsche, I. C. Bygbjerg, “Neuropsychiatric Manifestations after Mefloquine Therapy for Plasmodium Falciparum Malaria: Comparing a Retrospective and a Prospective Study,” Tropical Medicine and International Health, Vol. 3, No. 2, 1998, pp. 83-88. doi:10.1046/j.1365-3156.1998.00163.x
[37] M. M. El-Mofty, V. V. Khudoley, S. A. Skar and H. S. Abdelgawad, “The Carcinogenicity of Some Antimalarial Drugs Using the Egyptian Toad Bufo Regularis as a Biological Test Animal,” Nutrition and Cancer, Vol. 18, No. 2, 1992, pp. 191-198. doi:10.1080/01635589209514219
[38] S. G. Orta, R. A. Bouchard, S. F. Morales and E. M. Salinas-Stefanon, “Inhibition of Cardiac Na+ Current by Primaquine,” British Journal of Pharmacology, Vol. 135, No. 3, 2002, pp. 751-753. doi:10.1038/sj.bjp.0704460
[39] J .W. Tracy and L. T. Webster, “Drugs Used in the Chemotherapy of Protozoal Infections: Malaria,” In: J. G. Hardman, L. E. Limbird, A. G. Gilman, Goodman and Gilman, Eds., The Pharmacological Basis of Therapeutics, 10th Edition, McGraw-Hill, Book Co., New York, 2001, pp. 1069-1095.
[40] R. Ash-Bernal, R. Wise and S. M. Wright, “Acquired Methemoglobinemia: A Retrospective Series of 138 Case at 2 Teaching Hospitals,” Medicine (Baltimore), Vol. 83, No. 5, pp. 265-273.
[41] M. N. Lebedeva and V. M. Brusilovskaia, “Acute Toxic Action of Combinations of a New Antimalarial Preparation, Dabequine,” Meditsinskaia Parazitologiia i Parazitarnye Bolezni, Vol. 49 No. 6, 1980, pp. 27-31.
[42] P. H. Schlesinger, D. J. Krogstad and B. L. Herwaldt, “Antimalarial Agents: Mechanisms of Action,” Antimicrobial Agents and Chemotherapy, Vol. 32, No. 6, 1988, pp. 793-798. doi:10.1128/AAC.32.6.793
[43] J. G. Olenick and F. E. Hahn, “Mode of Action of Primaquine: Preferential Inhibition of Protein Biosynthesis in Bacillus megaterium,” Antimicrobial Agents and Chemotherapy, Vol. 1, No. 3, 1972, pp. 259-262. doi:10.1128/AAC.1.3.259
[44] J. K. Baker, R. H. Yarber, N. P. D. Nanayakkara, J. D. McChesney, F. Homo and I. Landau, “Effects of Aliphatic Side-Chain Substituents on the Antimalarial Activity and on the Metabolism of Primaquine Studied Using Mitochondria and Microsome Preparations,” Pharmaceutical Research, Vol. 7, No. 1, 1990, pp. 91-95. doi:10.1023/A:1015899928897
[45] L. H. Schmidt, S. Alexander, L. Allen and J. Rasco, “Comparison of the Curative Antimalarial Activities and Toxicities of Primaquine and Its d and l Isomers,” Antimicrobial Agents Chemotherapy, Vol. 12, No. 1, 1977, pp. 51-60. doi:10.1128/AAC.12.1.51
[46] J. K. Baker and J. D. McChesney, “Differential Metabolism of the Enantiomers of Primaquine,” Journal of Pharmaceutical Sciences, Vol. 77, No. 5, 1988, pp. 380-382. doi:10.1002/jps.2600770503
[47] A. Brossi, P. Millet, I. Landau, M. E. Bembenek and C. W. Abell, “Antimalarial Activity and Inhibition of Monoamine Oxidases A and B by Exo-Erythrocytic Antimalarials. Optical Isomers of Primaquine, N-Acylated Congeners, Primaquine Metabolites and 5-Phenoxy-Substituted Analogues,” FEBS Letters, Vol. 214, No. 2, 1987, pp. 291-294.
[48] D. R. Brocks and R. Mehvar, “Stereoselectivity in the Pharmacodynamics and Pharmacokinetics of the Chiral Antimalarial Drugs,” Clinical Pharmacokinetics, Vol. 42, No. 15, 2003, pp. 1359-1382. doi:10.2165/00003088-200342150-00004
[49] F. I. Carroll, B. Berrang and C. P. Linn, “Resolution of Antimalarial Agents via Complex Formation with α-(2,4, 5,7-Tetranitro-9-Fluorenylideneaminooxy) Propionic Acid,” Journal of Medical Chemistry, Vol. 21, No. 4, 1978, pp. 326-330. doi:10.1021/jm00202a002

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.