Organometallic Titanium Oxides Obtained by Low-Pressure Plasmas of Water on Titanium Tetrapropoxide

Abstract

This work describes the synthesis of organometallic titanium oxides using low-pressure plasmas of water on titanium tetrapropoxide (TTP) in solid phase with glow discharges in the 0.3 - 0.9 mbar, 100 - 150 W and 60 - 240 min intervals. The accelerated particles in the plasma promoted chemical reactions which produced the partial separation of organic and inorganic parts of TTP with the consequent formation of TiO in organometallic films and particles with photosensitivity. These compounds could hardly be obtained by conventional chemical synthesis. The size of particles was calculated in the 50 - 414 nm interval. The elemental analysis of the titanium oxides indicates that the C/Ti and O/Ti atomic ratios are in the 0.63 - 0.54 and 1.89 - 1.96 intervals respectively, depending on the conditions of synthesis, which suggests that the organic residues are approximately half of the inorganic content. This proportion affects the X-ray diffraction of the organometallic compounds making them essentially amorphous; however, they may have overlapped arrangements resembling some faces of anatase, at 25.3o and 32.5o, and rutile, at 43o, phases. The electrical conductivity of TiO between 20 and 100 was from 10–10 to 10–12 S/m with activation energy in the 0 - 2.12 eV interval with 3 tendencies associated with temperature.

Share and Cite:

F. González-Salgado, G. Cruz, M. Olayo, G. García-Rosales and L. Gómez, "Organometallic Titanium Oxides Obtained by Low-Pressure Plasmas of Water on Titanium Tetrapropoxide," Advances in Materials Physics and Chemistry, Vol. 2 No. 4, 2012, pp. 212-218. doi: 10.4236/ampc.2012.24032.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Porthault, F. Le Crasa and S. Franger, “Synthesis of LiCoO2 Thin Films by Sol/Gel Process,” Journal of Power Sources, Vol. 195, No. 19, 2010, pp. 6262-6267. doi:10.1016/j.jpowsour.2010.04.058
[2] C. Jin, R. Y. Zheng, Y. Guo, J. L. Xie, Y. X. Zhu and Y. C. Xie, “Hydrothermal Synthesis and Characterization of Phosphor-ous-Doped TiO2 with High Photocatalytic Activity for Methy-lene Blue Degradation,” Journal of Molecular Catalysis A: Chemical, Vol. 313, No. 1-2, 2009, pp. 44-48. doi:10.1016/j.molcata.2009.07.021
[3] R. Kripal, A. K. Gupta, S. K. Mishra, R. K. Srivastava, A. C. Pandey and S. G. Prakash, “Photoluminescence and Photocon-ductivity of ZnS:Mn2+ Nanoparticles Synthetized via Co-Precipitation Method,” Spectrochimica Acta, Part A, Mole-cular and Biomolecular Spectroscopy, Vol. 76, No. 5, 2010, pp. 523-530. doi:10.1016/j.saa.2010.04.018
[4] L. Chen, K. Rahme, J. D. Holmes, M. A. Morris and N. K. H. Slater, “Non-Solvolytic Synthesis of Aqueous Soluble TiO2 Nanoparticles and Real-Time Dynamic Measurements of the Nanoparticle Formation,” Nanoscale Research Letters, Vol. 7, No. 1, 2012, pp. 276-297. doi:10.1186/1556-276X-7-297
[5] G. J. Cruz, M. G. Olayo, O. G. Lopez, L. M. Gomez, J. Morales and R. Olayo, “Nanospherical Particles of Poly- pyrrole Syn-thesized and Doped by Plasma,” Polymer, Vol. 51, No. 19, 2010, pp. 4314-4318. doi:10.1016/j.polymer.2010.07.024
[6] R. Valencia, R. Lopez, S. R. Barocio, A. Mercado, R. Pe?a, A. Mu?oz, E. A. de la Piedad and J. M. de la Rosa, “TiO2 Films in the Rutile and Anatase Phases Produced by Inductively Coupled RF Plasmas,” Surface & Coatings Technology, Vol. 204, No. 18-19, 2010, pp. 3078- 3081. doi:10.1016/j.surfcoat.2010.02.059
[7] F. Gonzalez-Salgado, M. G. Olayo, G. J. Cruz and L. M. Gomez, “Synthesis of Titanium Oxide Nanoparticles by Plasma,” Superficies y Vacio, Vol. 25, No. 1, 2012, pp. 56-59.
[8] R. Szabova, L. Cernakova, M. Wolfova and M. Cernak, “Coat-ing of TiO2 Nanoparticles on the Plasma Activated Polypropy-lene Fibers,” Acta Chimica Slovaca, Vol. 2, No. 1, 2009, pp. 70-76.
[9] S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Susuki and S. Yoshikawa, “Synthesis, Characterization, Photocatalytic Activity and Dye-Sensitized Solar Cell Performance of Nano-rods/Nanoparticles TiO2 with Meso porous Structure,” Journal of Photochemistry Photobiology A: Chemistry, Vol. 184, No. 1-2, 2006, pp. 163-169. doi:10.1016/j.jphotochem.2006.04.010
[10] Y. Xiaodan, W. Qingyin, J. Shicheng and G. Yihang, “Nanos-cale ZnS/TiO2 Composites: Preparation, Characterization, and Visible-Light Photocatalytic Activity,” Materials Characteri-zation, Vol. 57, No. 4-5, 2006, pp. 333-341. doi:10.1016/j.matchar.2006.02.011
[11] D. L. Liao, G. S. Wu and B. Q. Liao, “Zeta Potential of Shape-Controlled TiO2 Nanoparticles with Surfactants,” Colloids Surfaces A, Physicochemical and Engineering Aspects, Vol. 348, No. 1-3, 2009, pp. 270-275. doi:10.1016/j.colsurfa.2009.07.036
[12] S. H. Lin, C. N. Chen and R. S. Juang, “Structure and Thermal Stability of Toxic Chromium(VI) Species Doped onto TiO2 Powders through Heat Treatment,” Journal of Environmental Management, Vol. 90, No. 5, 2009, pp. 1950-1955. doi:10.1016/j.jenvman.2008.12.013
[13] M. G. Olayo, J. Morales, G. J. Cruz, R. Olayo, E. Ordonez and S. R. Barocio, “On the Influence of Electron Energy on Iodine-Doped Polyaniline Formation by Plasma Polymerization,” Journal of Polymer Science, Part B: Polymer Physics, Vol. 39, No. 1, 2001, pp. 175- 183. doi:10.1002/1099-0488(20010101)39:1<175::AID-POLB160>3.3.CO;2-R
[14] M. G. Olayo, J. Morales, G. J. Cruz, S. R. Barocio and R. Olayo, “Numerical and Experimental Analysis of the Plasma in the Synthesis of Polyaniline,” Journal of Polymer Science, Part B: Polymer Physics, Vol. 41, No. 13, 2003, pp. 1501-1508. doi:10.1002/polb.10493
[15] J. M. Hernandez, L. A. Garcia and B. H. Zeifert, “Sintesis y Caracterizacion de Nanoparticulas de N-TiO2-Anatasa,” Superficies y Vacio, Vol. 21, No. 4, 2008, pp. 1-5.
[16] J. Morales, M. G. Olayo, G. J. Cruz and R. Olayo, “Synthesis by Plasma and Characterization of Bilayer Aniline- Pyrrole Thin Films Doped with Iodine,” Journal of Poly- mer Science Part B: Polymer Physics, Vol. 40, No. 17, 2002, pp. 1850-1856. doi:10.1002/polb.10254
[17] J. Morales, M. G. Olayo, G. J. Cruz, M. M. Castillo-Ortega and R. Olayo, “Electronic Conductivity of Pyrrole and Aniline Thin Films Polymerized by Plasma,” Journal of Polymer Science Part B: Polymer Physics, Vol. 38, No. 24, 2000, pp. 3247-3255. doi:10.1002/1099-0488(20001215)38:24<3247::AID-POLB60>3.0.CO;2-U
[18] R. Asmatulu, A. Karthikeyan, D. C. Bell, S. Ramanathan and M. J. Aziz, “Synthesis and Variable Temperature Electrical Conductivity Studies of Highly Ordered TiO2 Nanotubes,” Journal of Materials Science, Vol. 44, No. 17, 2009, pp. 4613-4616. doi:10.1007/s10853-009-3703-5
[19] M. Stamate, G. Lazar and I. Lazar, “Dimensional Effects Ob-served for the Electrical, Dielectric and Optical Properties of TiO2 DC Magnetron Thin Films,” Journal of Materials Science: Materials in Electronics, Vol. 20, No. 2, 2009, pp. 117-122. doi:10.1007/s10854-008-9644-y

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.