A Thermochemical Process Using Expanding Plasma for Nitriding Thin Molybdenum Films at Low Temperature

Abstract

The mechanical and chemical properties of transition metal nitrides are very attractive for numerous industrial applications. Thin nitride films are expected to be good diffusion barrier in microelectronic devices. Nitrogen diffuses into the whole thickness of the molybdenum film heated at low temperature and exposed to expanding plasma of (Ar-N2-H2) compared with pure N2 plasma. NHx species in the plasma are produced by different homogeneous or heterogeneous reactive mechanisms that results in an expansion of the plasma compared with pure N2 plasma. NHx species and probably H atoms improve the transfer of nitrogen into the metal by preventing the formation of MoO2 oxides which act as a barrier of diffusion for nitrogen.

Share and Cite:

I. Jauberteau, J. Jauberteau, S. Touimi, T. Merle-Méjean, S. Weber and A. Bessaudou, "A Thermochemical Process Using Expanding Plasma for Nitriding Thin Molybdenum Films at Low Temperature," Engineering, Vol. 4 No. 12, 2012, pp. 857-868. doi: 10.4236/eng.2012.412109.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Nagae, T. Yoshio, Y. Takemoto and J. Takada, “Microstructure of a Molybdenum Layer Formed by Nitriding Molybdenum Metal,” Journal of the American Ceramic Society, Vol. 84, No. 5, 2001, pp. 1175-1177.
[2] S. M. Aouadi, Y. Paudel, B. Luster, S. Stadler, P. Kohli, C. Muratore, C. Hager and A. A. Voevodin, “Adaptive Mo2N/MoS2/Ag Tribological Nanocomposite Coatings for Aerospace Applications,” Tribological Letters, Vol. 29, 2008, pp. 95-103.
[3] S. M. Aouadi, Y. Paudel, W. J. Simonson, Q. Ge, P. Kohli, C. Muratore and A. A. Voevodin, “Tribological Investigation of Adaptative Mo2N/MoS2/Ag Coatings with High Sulphur Contents,” Surface and Coatings Technology, Vol. 203, No. 10-11, 2009, pp. 1304-1309.
[4] S. Franssila, H. Kattelus and E. Nyk?nen, “Stress Control of Sputter-Deposited Mo-N Films for Micromechanical Applications,” Microelectronic Engineering, Vol. 60, No. 1, 2002, pp. 97-105. doi:10.1016/S0167-9317(01)00585-8
[5] J. F. Zhu, J. C. Guo, R. S. Zhai, X. Bao, X. Y. Zhang and S. Zhuang, “Preparation and Adsorption Properties of Mo2N Model Catalyst,” Applied Surface Science, Vol. 161, No. 1, 2000, pp. 86-93. doi:10.1016/S0169-4332(00)00128-8
[6] C. Shi, A. M. Zhu, X. F. Yang and C. T. Au, “On the Catalytic Nature of VN, Mo2N and W2N Nitrides for NO Reduction with Hydrogen,” Applied Catalysis A: General, Vol. 276, No. 1-2, 2004, pp. 223-230. doi:10.1016/j.apcata.2004.08.017
[7] M. Nagai, “Transition-Metal Nitrides for Hydrotreating Catalyst-Synthesis, Surface Properties, and Reactivities,” Applied Catalysis A: General, Vol. 322, 2007, pp. 178190.
[8] T. Shiota, T. Imamura and S. Hasuo, “Plasma Nitridation Process for Superconducting Nb Wiring to Improve Their Annealing Stability,” Journal of Applied Physics, Vol. 70, No. 11, 1991, pp. 6958-6965. doi:10.1063/1.349823
[9] R. Fix, R. G. Gordon and D. M. Hoffman, “Low-Temperature Atmospheric-Pressure Metal-Organic Chemical Vapour Deposition of Molybdenum Nitride Thin Films,” Thin Solid Films, Vol. 288, No. 1-2, 1996, pp. 116-119. doi:10.1016/S0040-6090(96)08867-0
[10] V. P. Anitha, S. Major, D. Chandrashekharam and M. Bhatnagar, “Deposition of Molybdenum Nitride Thin Films by r.f. Reactive Magnetron Sputtering,” Surface and Coatings Technology, Vol. 79, No. 1-3, 1996, pp. 50-54. doi:10.1016/0257-8972(95)02425-5
[11] S. X. Song, Y. Z. Liu, D. L. Mao, H. Q. Ling and M. Li, “Diffusion Barrier Performances of Thin Mo, Mo-N and Mo/Mo-N Films between Cu and Si,” Thin Solid Films, Vol. 476, No. 1, 2005, pp. 142-147. doi:10.1016/j.tsf.2004.09.046
[12] H. Jehn and P. Ettmayer, “The Molybdenum-Nitrogen Phase Diagram,” Journal of the Less-Common Metals, Vol. 58, No. 1, 1978, pp. 85-98. doi:10.1016/0022-5088(78)90073-5
[13] M. Maoujoud, M. Jardinier-Offergeld and F. Bouillon, “Synthesis and Characterization of Thin-Film Molybdenum Nitrides,” Applied Surface Science, Vol. 64, No. 2, 1993, pp. 81-89. doi:10.1016/0169-4332(93)90267-F
[14] Y. M. Wang and R. Y. Lin, “Amorphous Molybdenum Nitride Thin Films Prepared by Reactive Sputter Deposition,” Materials Science and Engineering B, Vol. 112, No. 1, 2004, pp. 42-49. doi:10.1016/j.mseb.2004.05.010
[15] S. M?ndl, J. W. Gerlach, W. Assmann and B. Rauschenbach, “Phase Formation and Diffusion after Nitrogen PIII in Molybdenum,” Surface and Coatings Technology, Vol. 174-175, 2003, pp. 1238-1242. doi:10.1016/S0257-8972(03)00457-2
[16] S. M?ndl, D. Manova, J. W. Gerlach, W. Assmann, H. Neumann and B. Rauschenbach, “High Temperature Nitrogen Plasma Immersion Ion Implantation into Molybdenum,” Surface and Coatings Technology, Vol. 180-181, 2004, pp. 362-366. doi:10.1016/j.surfcoat.2003.10.134
[17] S. M?ndl, J. W. Gerlach and B. Rauschenbach, “Nitride Formation in Transition Metals during High FluenceHigh Temperature Implantation,” Surface and Coatings Technology, Vol. 200, No. 1-4, 2005, pp. 584-588. doi:10.1016/j.surfcoat.2005.01.040
[18] I. Jauberteau, J. L. Jauberteau, M. Cahoreau and J. Aubreton, “Metal Carburizing and Nitriding in an Expanding Microwave Plasma: the Impinging Plasma Species Promote the Surface Reactivity,” In: J. Menon, Ed., Trends in Vacuum Science and Technology, Research Trends, Trivandrum, India, 2001, pp. 77-99.
[19] I. Jauberteau, M. J. Cinelli, M. Cahoreau, J. L. Jauberteau, and J. Aubreton, “Expanding Microwave Plasma for Steel Carburizing: Role of the Plasma Impinging Species on the Steel Surface Reactivity,” Journal of Vacuum and Science Technology A, Vol. 18, No. 1, 2000, pp. 108-114. doi:10.1116/1.582126
[20] L. Thomas, J. L. Jauberteau, J. Aubreton, A. Catherinot, A. R. De Souza and M. J. Cinelli, “Characterization of a Microwave Plasma Jet Containing Ar-CH4 Gas Mixture,” Applied Physics Letters, Vol. 64, No. 20, 1994, pp. 26432645. doi:10.1063/1.111478
[21] I. Jauberteau, J. L. Jauberteau, P. Goudeau, B. Soulestin, M. Marteau, M. Cahoreau and J. Aubreton, “Investigations on a Nitriding Process of Molybdenum Thin Films Exposed to (Ar-N2-H2) Expanding Microwave Plasma,” Surface and Coatings Technology, Vol. 203, No. 9, 2009, pp. 1127-1132. doi:10.1016/j.surfcoat.2008.10.012
[22] J. M. Modak, “Haber Process for Ammonia Synthesis,” 2002. http://en.wikipedia.org/wiki/Haber_process
[23] K. S. Yim and M. Venugopalan, “Plasma Chemical Synthesis: I. Effect of Electrode Material on the Synthesis of Ammonia,” Plasma Chemistry and Plasma Processing, Vol. 3, No. 3, 1983, pp. 343-350. doi:10.1007/BF00564632
[24] M. Touvelle, J. L. Munoz Licea and M. Venugopalan, “Plasma Chemical Synthesis: II. Effect of Wall Surface on the Synthesis of Ammonia,” Plasma Chemistry and Plasma Processing, Vol. 7, No. 1, 1987, pp. 1101-1108. doi:10.1007/BF01016001
[25] H. Hiyooka and O. Matsumoto, “Reaction Scheme of Am- monia Synthesis in the ECR Plasmas,” Plasma Chemistry and Plasma Processing, Vol. 16, No. 4, 1996, pp. 547- 562. doi:10.1007/BF01447008
[26] H. Uyama, T. Nakamura, S. Tanaka and O. Matsumoto, “Catalytic Effect of Iron Wires on the Syntheses of Ammonia and Hydrazine in a Radio-Frequency Discharge,” Plasma Chemistry and Plasma Processing, Vol. 3, No. 1, 1993, pp. 117-131. doi:10.1007/BF01447174
[27] A. Ricard, B. F. Gordiets, M. J. Pinheiro, C. M. Ferrira, G. Baravian, J. Amorim, S. Bockel and H. Michel, “Diagnostic and Modelling of N2-H2 Discharges for Iron Nitriding,” European Physical Journal: Applied Physic, Vol. 4, No. 1, 1998, pp. 87-93. doi:10.1051/epjap:1998246
[28] B. Gordiets, C. M. Ferreira, M. J. Pinheiro and A. Ricard, “Self-Consistent Kinetic Model of Low-Pressure N2-H2 Flowing Discharges: I. Volume processes,” Plasma Source Science and Technolgy, Vol. 7, No. 3, 1998, pp. 363-378. doi:10.1088/0963-0252/7/3/015
[29] B. Gordiets, C. M. Ferreira, M. J. Pinheiro and A. Ricard, “Self-Consistent Kinetic Model of Low-Pressure N2-H2 Flowing Discharges: II. Surface Processes and Densities of N, H, NH3,” Plasma Source Science and Technolgy, Vol. 7, No. 3, 1998, pp. 379-388. doi:10.1088/0963-0252/7/3/016
[30] J. L. Jauberteau, I. Jauberteau and J. Aubreton, “NH3 and NHx<3 Radicals Synthesis Downstream a Microwave Discharge Sustained in an Ar-N2-H2 Gas Mixture. Study of Surface Reactive Processes and Determination of Rate Constants,” Journal of Physic D: Applied Physic, Vol. 35, 2002, pp. 665-674.
[31] S. Touimi, J. L. Jauberteau, I. Jauberteau and J. Aubreton, “Plasma Chemistry and Diagnostic in an Ar-N2-H2 Microwave Expanding Plasma Used for Nitriding Treatments,” Journal of Physic D: Applied Physic, Vol. 43, No. 20, 2010, Article ID: 205203. doi:10.1088/0022-3727/43/20/205203
[32] J. H. van Helden, W. Wagemans, G. Yagci, R. A. B. Zijlmans, D. C. Schram and R. Engeln, “Detailed Study of the Plasma-Activated Catalytic Generation of Ammonia in N2-H2 Plasmas,” Journal of Applied Physic, Vol. 101, No. 4, 2007, Article ID: 043305. doi:10.1063/1.2645828
[33] J. H. van Helden, P. J. van den Oever, W. M. M. Kessels, M. C. M. van de Sanden, D. C. Schram and R. Engeln, “Production Mechanisms of NH and NH2 Radicals in N2-H2 Plasmas,” Journal of Physical Chemistry, Vol. A 111, 2007, pp. 11460-11472. doi:10.1021/jp0727650
[34] K. J. Laidler, “Catalysis,” The Waverly Press Inc., Baltimore, 1954, p. 206
[35] C. I. Butoi, M. L. Steen, J. R. D. Peers and E. R. Fisher, “Mechanism and Energy Transfer for Surface Generation of NH2 during NH3 Plasma Processing of Metal and Polymer Substrates,” Journal of Physical Chemistry, Vol. B105, 2001, pp. 5957-5967.
[36] H. Nagai, S. Takashima, M. Hiramatsu, M. Hori and T. Goto, “Behavior of Atomic Radicals and Their Effects on Organic Low Dielectric Constant Film Etching in High Density N2/H2 and N2/NH3 Plasmas,” Journal of Applied Physic, Vol. 91, No. 5, 2002, pp. 2615-2621. doi:10.1063/1.1435825
[37] V. Tarnovsky, H. Deutsch and K. Becker, “Cross-Sec- tions for the Electron Impact Ionizations of NDx (x=1-3),” International. Journal of Mass Spectrometry, Vol. 167- 168, 1997, pp. 69-78. doi:10.1016/S0168-1176(97)00033-5
[38] National Institute of Standards and Technology (NIST). http://physics.nist.gov/PhysRefData/Ionization.html
[39] D. Rapp and P. Englander-Golden, “Total Cross Sections for Ionization and Attachment in Gazes by Electron Impact. I. Positive Ionization,” Journal of Chemical Physics, Vol. 43, No. 5, 1965, pp. 1464-1479. doi:10.1063/1.1696957
[40] N. Stothard, R. Humpfer and H. H. Grotheer, “The Multi-channel Reaction NH2+NH2 at Ambient Temperature and Low Pressure,” Chemical Physics Letters, Vol. 240, No. 5, 1995, pp. 474-480. doi:10.1016/0009-2614(95)00563-J
[41] S. X. Huang, T. S. Rufael and J. L. Gland, “Diimide Formation on the Ni(100) Surface,” Surface Science Letters, Vol. 290, No. 1-2, 1993, pp. L673-L676.
[42] L. O. Alemàn-Vàzquez, E. Torres-Garcia, J. R. Villagomez-Ibarra and J. L. Cano-Dominguez, “Effect of the Particle Size on the Activity of MoOxCy Catalysts for the Isomerization of Heptane,” Catalysis Letters, Vol. 100, No. 3-4, 2005, pp. 219-225. doi:10.1007/s10562-004-3459-0
[43] M. Dieterle, G. Weinberg and G. Mestl, “Raman Spectroscopy of Molybdenum Oxides. Part I. Structural Characterization of Oxygen Defects in MoO3-x by DR UV/VIS, Raman Spectroscopy and X-ray Diffraction,” Physical Chemistry Chemical Physics, Vol. 4, No. 5, 2002, pp. 812-821. doi:10.1039/b107012f
[44] A. Klisinska, A.-S. Mamede and E. M. Gaigneaux, “Effect of the Nature of the Precursor on the Morphology of MoO3 Thin Films Spin-Coated on Si (100),” Thin Solid Films, Vol. 516, No. 10, 2008, pp. 2904-2912. doi:10.1016/j.tsf.2007.05.063
[45] M. Dieterle and G. Mestl, “Raman Spectroscopy of Molybdenum Oxides. Part II. Resonance Raman Spectroscopic Characterization of the Molybdenum Oxides Mo4O11 and MoO2,” Physical Chemistry Chemical Physics, Vol. 4, No. 5, 2002, pp. 822-826. doi:10.1039/b107046k
[46] [46] L. Kumari, Y.-R. Ma, C.-C. Tsai, Y.-W. Lin, S. Y. Wu, K.-W. Cheng and Y. Liou, “X-Ray Diffraction and Raman Scattering Studies on Large-Area Array and Nano- branched Structure of 1D MoO2 Nanorods,” Nanotechnology, Vol. 18, 2007, Article ID: 115717. doi:10.1088/0957-4484/18/11/115717
[47] I. Jauberteau, J. L. Jauberteau, M. Cahoreau and J. Aubreton, “Surface Reactivity of Moybdenum Thin Films Exposed to (Ar-N2-H2) Expanding Microwave Plasma at Low Temperature: Influence of the Addition of H2 Gas in the Plasma,” Journal of Physics D: Applied Physics, Vol. 38, No. 19, 2005, pp. 3654-3663. doi:10.1088/0022-3727/38/19/014
[48] C. P. Constable, J. Yarwood and W.-D. Münz, “Raman Microscopic Studies of PVD Hard Coatings,” Surface and Coatings Technology, Vol. 116-119, 1999, pp. 155159. doi:10.1016/S0257-8972(99)00072-9
[49] C. L. Bull, T. Kawashima, P. F. McMillan, D. Machon, O. Shebanova, D. Daisenberger, E. Soignard, E. Takayama-Muromachi and L. C. Chapon, “Crystal Structure and High-Pressure Properties of Mo2N Determined by Neutron Powder Diffraction and X-Ray Diffraction,” Journal of Solid state Chemistry, Vol. 179, 2006, pp. 1762-1767.
[50] R. H. Perry and D. W. Green, Eds., “Chemical Engineering Handbook,” 6th Edition, McGrow-Hill, New York, 1984.
[51] S. Touimi, I. Jauberteau, J. L. Jauberteau, S. Weber, A. Bessaudou, A. Passelergue and J. Aubreton, “Plasma and Material Surface Investigations in a Nitriding Process of Thin Molybdenum Films Using an Expanding (Ar-N2-H2) Plasma,” Physical and Chemical News, Vol. 62, 2011, pp. 01-09.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.