Linking Climatic Variability with Spatial Performance in Two Varieties of Quinoa Distributed in a Semi-Arid Zone

Abstract

Different crop varieties can respond in different ways to the climatic variations at local scale. Thus, in order to maximize the yield for a determined crop, the response of different varieties submitted to local climatic conditions should be assessed. The main goal of this study was to evaluate the ecophysiological responses of two varieties of Quinoa (PRP and BO78) submitted to different conditions of thermal amplitude. We performed two experiments in both greenhouse and in 3 sites on experimental-field where were evaluated survival, photochemical efficiency, plant growth and dry biomass in both varieties and compared them with the mean of the thermal conditions recorded during the last 16 years in the Coquimbo Region, Chile. Overall, individuals of BO78 showed higher performance in the sites with lower thermal amplitude than those of PRP. By contrast, in sites with higher thermal amplitude individuals of PRP showed better survival, physiological performance and biomass and therefore higher performance. Our results suggest that while BO78 showed an ecotypic strategy, the PRP showed a plastic strategy to maintain higher performance in sites with moderate and high climatic variability. We consider that under an increase in desertification, semi-arid areas would be available for stress tolerant crops like Quinoa, but the success for the food security in these regions may depend upon the variety used.

Share and Cite:

S. Montecinos, P. Salinas, R. Oses, L. González-Silvestre and M. Molina-Montenegro, "Linking Climatic Variability with Spatial Performance in Two Varieties of Quinoa Distributed in a Semi-Arid Zone," American Journal of Plant Sciences, Vol. 3 No. 12, 2012, pp. 1682-1687. doi: 10.4236/ajps.2012.312205.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. J. Flowers, “Improving Crop Salt Tolerance,” Journal of Experimental Botany, Vol. 55, No. 396, 2004, pp. 307-319. doi:10.1093/jxb/erh003
[2] K. Ruiz-Carrasco, F. Antognoni, A. Konotie-Coulibaly, S. Lizardi, A. Covarrubias, E. A. Martínez, M. A. Molina-Montenegro, S. Biondi and A. Zurita-Silva, “Variation in Salinity Tolerance of Four Lowland Varieties of Quinoa (Chenopodium quinoa Willd.) as Assessed by Growth, Physiological Traits, and Sodium Transporter Gene Expression,” Plant Physiology and Biochemistry, Vol. 49, No. 11, 2011, pp. 1333-1341. doi:10.1016/j.plaphy.2011.08.005
[3] B. Kruk, P. Insausti, A. Razul and R. Benech-Arnold, “Light and Thermal Environments as Modified by a Wheat Crop: Effects on Weed Seed Germination,” Journal of Applied Ecology, Vol. 43, No. 2, 2006, pp. 227-236. doi:10.1111/j.1365-2664.2006.01140.x
[4] P. W. Barnes, S. D. Flint and M. M. Caldwell, “Morphological Responses of Crop and Weed Species of Different Growth Forms to Ultraviolet-B Radiation,” American Journal of Botany, Vol. 77, No. 10, 1990, pp. 1355-1360. doi:10.2307/2444596
[5] H. W. Koyro and S. S. Eisa, “Effect of Salinity on Composition, Viability and Germination of Seeds of Chenopodium quinoa Willd,” Plant and Soil, Vol. 302, 2008, pp. 79-90. doi:10.1007/s11104-007-9457-4
[6] N. S. Mattson and W. R. Leatherwood, “Potassium Silicate Drenches Increase Leaf Silicon Content and Affect Morphological Traits of Several Floriculture Crops Grown in a Peat-Based Substrate,” HortScience, Vol. 45, No. 1, 2010, pp. 43-47.
[7] M. S. Heschel, S. E. Sultan, S. Glover and D. Sloan, “Population Differentiation and Plastic Responses to Drought Stress in the Generalist Annual Polygonum persicaria,” International Journal of Plant Sciences, Vol. 165, No. 5, 2004, pp. 817-824. doi:10.1086/421477
[8] M. A. Molina-Montenegro, A. Zurita-Silva and R. Oses, “Effect of Water Availability on Physiological Performance and Lettuce Crop Yield (Lactuca sativa),” Ciencia e Investigación Agraria, Vol. 38, No. 1, 2011, pp. 65-74.
[9] M. Rosa, M. Hilal, J. A. González and F. E. Prado, “Changes in Soluble Carbohydrates and Related Enzymes Induced by Low Temperature during Early Developmental Stages of Quinoa (Chenopodium quinoa) Seedlings,” Journal of Plant Physiology, Vol. 161, No. 6, 2004, pp. 683-689. doi:10.1078/0176-1617-01257
[10] J. F. Bois, T. Winkel, J. P. Lhomme, J. P. Raffaillac and A. Rocheteau, “Response of Some Andean Cultivars of Quinoa (Chenopodium quinoa Willd.) to Temperature: Effects on Germination, Phenology, Growth and Freezing,” European Journal of Agronomy, Vol. 25, No. 4, 2006, pp. 299-308. doi:10.1016/j.eja.2006.06.007
[11] G. Adrian and F. Fiedler, “Simulation of Unstationary Wind and Temperature Fields over Complex Terrain and Comparison with Observations,” Contribution to Atmospheric Physics, Vol. 64, 1991, pp. 27-48.
[12] S. Montecinos, W. Boersch-Supan, V. Favier, O. Asudillo and Y. Tracol, “Impacts of Agricultural Activities on the Regional Climate in an Arid Zone in Chile,” Die Erde, Vol. 139, 2008, pp. 77-95.
[13] M. R. Anderberg, “Cluster Analysis for Applications,” Academic Press, New York, 1973.
[14] J. H. Ward, “Hierarchical Grouping to Optimize an Objective Function,” Journal of the American Statistical Association, Vol. 58, No. 301, 1963, pp. 236-244. doi:10.1080/01621459.1963.10500845
[15] E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne and D. Joseph, “The NCEP/NCAR 40-Year Reanalysis Project,” Bulletin of the American Meteorological Society, Vol. 77, No. 3, 1996, pp. 437-471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[16] CONAMA, “Catastro y Evaluación de Recursos Vegetacionales nativos de Chile,” Universidad Austral de Chile, Pontificia Universidad Católica de Chile, Universidad Católica de Temuco, Chile, 1999.
[17] T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures,” Physiologia Plantarum, Vol. 15, No. 43, 1962, pp. 473-479. doi:10.1111/j.1399-3054.1962.tb08052.x
[18] E. A. Martínez, E. Veas, C. Jorquera, R. San Martín and P. Jara, “Re-Introduction of Chenopodium quinoa Willd. into arid Chile: Cultivation of Two Lowland Races under Extremely Low Irrigation,” Journal of Agronomy and Crop Science, Vol. 195, No. 1, 2009, pp. 1-10. doi:10.1111/j.1439-037X.2008.00332.x
[19] S. Geerts, D. Raes, M. Garcia, C. Taboada, R. Miranda, J. Cusicanqui, T. Mhizha and J. Vacher, “Modeling the Potential for Closing Quinoa Yield Gaps under Varying Water Availability in the Bolivian Altiplano,” Agricultural Water Management, Vol. 96, 2009, pp. 1652-1658. doi:10.1016/j.agwat.2009.06.020
[20] J. A. González, M. Gallardo, M. Hilal, M. Rosa and F. E. Prado, “Physiological Responses of Quinoa (Chenopodium quinoa Willd.) to Drought and Waterlogging Stresses: Dry Matter Partitioning,” Botanical Studies, Vol. 50, No. 1, 2009, pp. 35-42.
[21] J. R. Porter and M. A. Semenov, “Crop Responses to Climatic Variation,” Philosophical Transaction of the Royal Society B, Vol. 360, No. 1463, 2005, pp. 2021- 2035. doi:10.1098/rstb.2005.1752
[22] H. R. Huarte and R. L. Benech-Arnold, “Understanding Mechanisms of Reduced Annual Weed Emergence in Alfalfa,” Weed Science, Vol. 51, No. 6, 2003, pp. 876-885. doi:10.1614/P2002-140
[23] S. E. Jacobsen, C.Monteros, J. L. Christiansen, L. A. Bravo, L. J. Corcuera and A. Mujica, “Plant Responses of Quinoa (Chenopodium quinoa Willd.) to Frost at Various Phenological Stages,” European Journal of Agronomy, Vol. 22, No. 2, 2005, pp. 131-139. doi:10.1016/j.eja.2004.01.003
[24] C. D. Schlichting and M. Pigliucci, “Phenotypic Evolution: A Reaction Norm Perspective,” Sunderland, Sinauer, 1998.
[25] M. A. Molina-Montenegro, C. Atala and E. Gianoli, “Phenotypic Plasticity and Performance of Taraxacum officinale (Dandelion) in Habitats of Contrasting Environmental Heterogeneity,” Biological Invasions, Vol. 12, No. 7, 2010, pp. 2277-2284. doi:10.1007/s10530-009-9638-6
[26] IPCC, “Intergovernmental Panel of Climate Change,” 2007. http://www.ipcc.ch

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.