Share This Article:

Pathogenesis of cardiac graft failure in children

Full-Text HTML XML Download Download as PDF (Size:89KB) PP. 298-302
DOI: 10.4236/ojped.2012.24051    3,130 Downloads   4,564 Views  

ABSTRACT

For many critical cardiac conditions such as cardio-myopathy, congenital heart defects, or arrhythmogenic disorders, cardiac transplantation is often an accepted treatment with optimistic one- and five-year survival rates of 90% and 75% in the pediatric patient population, respectively. However, poor long-term survival is a cause for concern, with cardiac graft failure being the leading cause in late mortality transplant recipients. Cardiac graft failure occurs through several mechanisms. However, the most common causes include cardiac allograft vasculopathy, myocardial fibrosis, and fibrofatty changes. Risk factors exacerbate these mechanisms through rejection, immunosuppressive drug side effects, hypertension, diabetes mellitus, renal dysfunction, and viral infection to increase the chance of cardiac graft failure. Changes in expression levels of various genes offer diagnostic potential for the future of cardiac transplantation. Through a comprehensive review of how multiple factors can lead a cardiac graft into failure, we hope to contribute to the longevity of cardiac grafts and pediatric heart transplant recipients.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Lin, J. and M. Shehata, B. (2012) Pathogenesis of cardiac graft failure in children. Open Journal of Pediatrics, 2, 298-302. doi: 10.4236/ojped.2012.24051.

References

[1] Mahle, W.T. (2008) Cardiac retransplantation in children. Pediatric Transplantation, 12, 274-280. doi:10.1111/j.1399-3046.2007.00854.x
[2] Sacks, J.H., Mahle, W., Abramowsky, C.R., Steelman, C.K., Kanter, K.R., Vincent, R.N., Berg, A. and Shehata B. (2010) Fibrofatty changes in failed pediatric cardiac allografts. Pediatric and Developmental Pathology, 14, 194-197.
[3] Milanesi, O., Cerutti, A., Biffanti, R., Salvadori, S., Gambino, A. and Stellin, G. (2007) Heart transplantation in pediatric age. Journal of Cardiovascular Medicine, 8, 67-71. doi:10.2459/01.JCM.0000247439.89946.20
[4] Huebler, M., Schubert, S., Lehmkuhl, H.B., Weng, Y., Miera, O., Alexi-Meskishvili, V., Berger and F., Hetzer, R. (2011) Pediatric heart transplantation: 23-year single-center experience. European Journal Cardio—Thoracic Surgery, 39, e83-e89. doi:10.1016/j.ejcts.2010.12.067
[5] Perens, G., Li, F., Meier, S., Kaur, R., Alejos, J.C. and Fishbein, M. (2009) Clinico-pathologic findings in end-stage pediatric heart transplant grafts. Pediatric Transplantation, 13, 887-891. doi:10.1111/j.1399-3046.2008.01087.x
[6] Hollenberg, S.M., Klein, L.W., Parrillo, J.E., Scherer, M., Burns, D., Tamburro, P., Oberoi, M., Johnson, M.R. and Costanzo, M.R. (2001) Coronary endothelial dysfunction after heart transplantation predicts allograft vasculopathy and cardiac death. Circulation, 104, 3091-3096. doi:10.1161/hc5001.100796
[7] Khan, U.A., Williams, S.G., Fildes, J.E. and Shaw, S.M. (2009) The pathophysiology of chronic graft failure in the cardiac transplant patient. American Journal of Transplantation, 9, 2211-2216. doi:10.1111/j.1600-6143.2009.02807.x
[8] Krenning, G., Zeisberg, E.M. and Kalluri R. (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. Journal of Cellular Physiology, 225, 631-637. doi:10.1002/jcp.22322
[9] Gandhi, M.S., Kamalov, G., Shahbaz, A.U., Bhattacharya, S.K., Ahokas, R.A., Sun, Y., Gerling, I.C. and Weber, K.T. (2011) Cellular and molecular pathways to myocardial necrosis and replacement fibrosis. Heart Failure Reviews, 16, 23-34. doi:10.1007/s10741-010-9169-3
[10] Mehra, M.R., Uber, P.A. and Benitez, R.M. (2010) Gene-based bio-signature patterns and cardiac allograft rejection. Heart Failure Clinics, 6, 87-92. doi:10.1016/j.hfc.2009.08.010
[11] Di Filippo, S., Girnita, A., Webber, S.A., Tsao, S., Boyle, G.J., Miller, S.A., Gandhi, S.K. and Zeevi, A. (2005) Impact of ELISA-detected anti-HLA antibodies on pediatric cardiac allograft outcome. Human Immunology, 66, 513-518. doi:10.1016/j.humimm.2004.12.008
[12] LaRosa, C., Baluarte, H.J. and Meyers, K.E. (2011) Outcomes in pediatric solid-organ transplantation. Pediatric Transplantation, 15, 128-141. doi:10.1111/j.1399-3046.2010.01434.x
[13] Moulik, M., Breinholt, J.P., Dreyer, W.J., et al. (2010) Viral endomyocardial infection is an independent predictor and potentially treatable risk factor for graft loss and coronary vasculopathy in pediatric cardiac transplant recipients. Journal of the American College of Cardiology, 56, 582-592. doi:10.1016/j.jacc.2010.02.060
[14] Tambur, A.R., Pamboukian, S., Costanzo, M.R. and Heroux, A. (2006) Genetic polymorphism in platelet-derived growth factor and vascular endothelial growth factor are significantly associated with cardiac allograft vasculopathy. The Journal of Heart and Lung Transplantation, 25, 690-698. doi:10.1016/j.healun.2006.02.006
[15] Ternstrom, L., Jeppsson, A., Ricksten, A. and Nilsson, F. (2005) Tumor necrosis factor gene polymorphism and cardiac allograft vasculopathy. The Journal of Heart and Lung Transplantation, 24, 433-438. doi:10.1016/j.healun.2004.02.019

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.