Glutathione peroxidase, superoxide dismutase and catalase activities in children with chronic hepatitis

Abstract

The advantages of measuring hepatic oxidative status in liver biopsy are that it helps in diagnosis of hepatic dysfunction, reflects the degree of deterioration in the liver tissues, and helps to determine the severity of hepatic injury. We aimed to study the oxidative stress state in children with chronic hepatitis by using indirect approach in which antioxidant enzymes such as glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT) are determined in the liver tissue. The present study included 21 children and adolescents (12 males, 9 females) suffering from chronic hepatitis. Patients were selected from the Hepatology Clinic, New Children’s Hospital, Cairo University from November 2006 till 2009 and compared with a group of 7 children who happened to have incidental normal liver biopsy. Children with chronic hepatitis had mean age 8.12 ± 1.15 years. It was further subdivided into 2 subgroups: chronic viral heaptitis (n = 13) and cryptogenic hepatitis (n = 8). GPX, SOD and CAT levels were measured in fresh liver tissue (cell free homogenates) using ELISA. In chronic hepatitis group; there was a significant increase in the hepatic GPX activity (38.59 ± 35.82 nmol/min/ml) as compared to the control group (10.62 ± 6.68 nmol/min/ml). Also a significant correlation was observed between SOD and both ALT (r = 0.87, p < 0.05) and AST (r = 0.74, p < 0.05). GPX correlated with ALT (r = 0.80, p < 0.05) level in the chronic viral hepatitis subgroup. Our findings suggest that oxidative stress could play a role in the pathogenesis of chronic hepatitis. These preliminary results are encouraging to conduct more extensive clinical studies combining antioxidant therapy with various treatments.

Share and Cite:

Ismail, N. , Okasha, S. , Dhawan, A. , Rahman, A. , Hamid, N. and Shaker, O. (2012) Glutathione peroxidase, superoxide dismutase and catalase activities in children with chronic hepatitis. Advances in Bioscience and Biotechnology, 3, 972-977. doi: 10.4236/abb.2012.327119.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Boya, P., De la Pena, A., Beloqui, O., Larrea, E., Conchillo, M., Castelruiz, Y., Civeira, M.P. and Prieto, J. (1999) Antioxidant status and glutathione metabolism in peripheral blood mononuclear cells from patients with chronic hepatitis C. Journal of Hepatology, 31, 808-814. doi:10.1016/S0168-8278(99)80281-5
[2] Chrobot, M., Szaflarska-Szczepanik, A. and Drewa, G. (2000) Antioxidant defense in children with chronic viral hepatitis B and C. Medical Science Monitor, 6, 713-718.
[3] Cesaratto, L., Vascotto, C., Calligaris, S. and Tell, G. (2004) The importance of redox state in liver damage. Annals of Hepatology, 3, 86-92.
[4] Jabonowska, E.H., Tch′orzewski, H.P., Lewkowicz, P. and Kuydowicz, J.J. (2005) Reactive oxygen intermediates and serum antioxidative system in patients with chronic C hepatitis treated with IFN-α and thymus factor X. Archivum Immunologiae et Therapiae Experimentalis, 53, 529-533.
[5] Favier, A. (2006) Oxidative stress in human diseases. Annales Pharmaceutiques Francaises, 64, 390-396.
[6] Farinati, F.R., Cardin, R.N., De Maria, N., et al. (1995) Iron storage, lipid peroxidation and glutathione turnover in chronic anti-HCV positive hepatitis. Journal of Hepatology, 22, 449-456. doi:10.1016/0168-8278(95)80108-1
[7] Barbaro, G.G.D., Lorenzo, G.D.M., Ribersani, M., et al. (1999) Serum ferritin and hepatic glutathione concentrations in chronic hepatitis C patients related to the hepatitis C virus genotype. Journal of Hepatology, 30, 774-782. doi:10.1016/S0168-8278(99)80128-7
[8] Madan, K., Bhardwaj, P., Thareja, S., Siddhartha, D.G. and Saraya, A. (2006) Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD). Journal of Clinical Gastroenterology, 40, 930-935. doi:10.1097/01.mcg.0000212608.59090.08
[9] Czeczot, H.D., Scibior, D.M., Skrzycki, M. and Podsiad, M. (2006) Glutathione and GSH-dependent enzymes in patients with liver cirrhosis and hepatocellular carcinoma. Acta Biochimica Polonica, 53, 237-241. www.actabp.pl
[10] Ismail, N.A., Okasha, S.H., Dhawan, A., Abdel, A.M.O., Rahman, A.M.O., Shaker, O.G. and Sadik, N.A.H. (2009) Glutathione peroxidase, superoxide dismutase and catalase activities in hepatic tissue from children with glycogen storage disease. Archives of Medical Science, 5, 86-90. http://www.termedia.pl/Glutathione-peroxidase-superoxide-dismutase-and-catalase-activities-in-hepatic-tissue-from-children-with-glycogen-storage-disease,19,12292,1,1.html
[11] Ismail, N.A., Okasha, S.H., Dhawan, A., Abdel Rahman, A.M.O., Shaker, O.G. and Sadik, N.A.H. (2010) Antioxidant enzyme activities in hepatic tissue from children with chronic cholestatic liver disease. Saudi Journal of Gastroenterology, 16, 90-94. doi:10.4103/1319-3767.61234
[12] Cesaratto, L., Vascotto, C., Calligaris, S. and Tell, G. (2004) The importance of redox state in liver damage. Annals of Hepatology, 3, 86-92.
[13] Waris, G., Turkson, J., Tarek Hassanein, T. and Siddiqui, A. (2005) Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication. Journal of Virology, 79, 1569-1580. doi:10.1128/JVI.79.3.1569-1580.2005
[14] Swietek, K. and Juszczyk, J. (1997) Reduced glutathione concentration in erythrocytes of patients with acute and chronic viral hepatitis. Journal of Viral Hepatitis, 4, 139- 141.
[15] Han, D., Hanawa, N., Saberi, B. and Kaplowitz, N. (2006) Role of glutathione redox status in liver injury. American Journal of Physiology, Gastrointestinal and Liver Physiology, 291, 1-7. doi:10.1152/ajpgi.00001.2006
[16] Zhang, W., Ramanathan, C.S., Nadimpalli, R.G., Bhat, A.A., Cox, A.G. and Taylor, E.W. (1999) Selenium-dependent glutathione peroxidase modules encoded by RNA viruses. Biological Trace Element Research, 70, 97-116. doi:10.1007/BF02783852
[17] Wisniewska-Ligier, M., Wozniakowska-Gesicka, T., Lewkowicz, P., Kups, J. and Andrzejewski, A. (2004) Neutrophil oxidative metabolism in children with chronic hepatitis C. Przegl Lek, 61, 1338-1341.
[18] De-Haan, J.B., Wolvetang, E.J., Cristiano, F., Iannello, R., Bladier, C., Kelner, M., et al. (1997) Reactive oxygen species and their contribution to pathology in down syndrome. Advances in Pharmacology, 38, 379-402. doi:10.1016/S1054-3589(08)60992-8
[19] Buttke, T.M. and Sandstrom, P.A. (1994) Oxidative stress as a mediator of apoptosis. Immunology Today, 15, 7-10. doi:10.1016/0167-5699(94)90018-3
[20] McHutchison, J.G., Gordon, S.C., Schiff, E.R., Shiffman, M.L., Lee, W.M., Rustgi, V.K., Goodman, Z.D., Ling, M.H., Cort, S. and Albrecht, J.K. (1998) Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. The New England Journal of Medicine, 339, 1485-1492. doi:10.1056/NEJM199811193392101
[21] Hoofnagle, J.H. (1999) Management of hepatitis C: Current and future perspectives. Journal of Hepatology, 31, 264-268. doi:10.1016/S0168-8278(99)80414-0
[22] Melhem, A., Stern, M., Shibolet, O., Israeli, E., Ackerman, Z., Pappo, O., Hemed, N., Rowe, M., Ohana, H., Zabrecky, G., Cohen, R. and Ilan, Y. (2005) Treatment of chronic hepatitis C virus infection via antioxidants— Results of a phase I clinical trial. Journal of Clinical Gastroenterology, 39, 737-742. doi:10.1097/01.mcg.0000174023.73472.29
[23] Shen, X., Cheng, W., Li, X., Sun, J., Li, F., Ma, L. and Xie, L. (2005) Effects of dietary supplementation with vitamin E and selenium on rat hepatic stellate cell apoptosis. World Journal of Gastroenterology, 11, 4957-4961.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.