Share This Article:

Born Rule and Noncontextual Probability

Full-Text HTML Download Download as PDF (Size:249KB) PP. 1802-1812
DOI: 10.4236/jmp.2012.311225    3,865 Downloads   5,934 Views   Citations

ABSTRACT

We present a new derivation of the Born rule from the assumption of noncontextual probability (NCP). Within the theorem we also demonstrate the continuity of probability with respect to the amplitudes, which has been suggested to be a gap in Zurek’s and Deutsch’s approaches, and we show that NCP is implicitly postulated also in their derivations. Finally, physical motivations of NCP are given based on an invariance principle with respect to a resolution change of measurements and with respect to the principle of no-faster-than-light signalling.

Cite this paper

F. Logiurato and A. Smerzi, "Born Rule and Noncontextual Probability," Journal of Modern Physics, Vol. 3 No. 11, 2012, pp. 1802-1812. doi: 10.4236/jmp.2012.311225.

References

[1] J. A. Wheeler and W. H. Zurek, Eds., “Quantum Theory and Measurement,” Princeton University Press, Princeton, 1963.
[2] J. von Neumann, “Mathematical Foundations of Quantum Mechanics,” Princeton University Press, Princeton, 1955. doi:10.1063/1.3061789
[3] T. F. Jordan, “Linear Operators for Quantum Mechanics,” John Wiley Sons, New York, 1969. doi:10.1119/1.1975255
[4] A. M. Gleason, “Measures on the Closed Subspaces of a Hilbert Space,” Journal of Mathematics and Mechanics, Vol. 6, No. 6, 1957, pp. 885-893.
[5] H. Everett, “Relative State Formulation of Quantum Mechanics,” Reviews of Modern Physics, Vol. 29, No. 3, 1957, pp. 454-462. doi:10.1103/RevModPhys.29.454
[6] B. S. DeWitt, “The Many-Universes Interpretation of Quantum Mechanics,” In: B. d’Espagnat, Ed., Foundations of Quantum Mechanics, Academic Press, New York, 1971.
[7] D. Finkelstein, “The Logic of Quantum Mechanics,” Transactions of the New York Academy of Sciences, Vol. 25, No. 6, 1965, pp. 621-637. doi:10.1111/j.2164-0947.1963.tb01483.x
[8] J. B. Hartle, “Quantum Mechanics of Individual Systems,” American Journal of Physics, Vol. 36, No. 8, 1968, pp.704-712. doi:10.1119/1.1975096
[9] N. Graham, “The Measurement of Relative Frequency,” In: B. S. DeWitt and N. Graham, Eds., The Many-Worlds Interpretation of Quantum Mechanics, Princeton University Press, Princeton, 1973.
[10] R. Geroch, “The Everett Interpretation,” No?s, Vol. 18, No. 4, 1984, pp. 617-633. doi:10.2307/2214880
[11] E. Farhi, J. Goldstone and S. Gutmann, “How Probability Arises in Quantum Mechanics,” Annals of Physics, Vol. 192, No. 2, 1989, pp. 368-382. doi:10.1016/0003-4916(89)90141-3
[12] H. Stein, “The Everett Interpretation of Quantum Mechanics: Many Worlds or None?” No?s, Vol. 18, No. 4, 1984, pp. 635-652. doi:10.2307/2214881
[13] A. Kent, “Against Many-Worlds Interpretations,” International Journal of Modern Physics A, Vol. 5, No. 9, 1990, pp. 1745-1762. doi:10.1142/S0217751X90000805
[14] T. Endo, “Verification of Born’s Rule by a Quantum Mechanical Meter,” Physics Letters A, Vol. 308, No. 4, 2003, pp. 256-258. doi:10.1016/S0375-9601(03)00083-5
[15] C M. Caves, C. A. Fuchs and R. Schack, “Quantum Probabilities as Bayesian Probabilities,” Physical Review A, Vol. 65, No. 2, 2002, pp. 1-6. doi:10.1103/PhysRevA.65.022305
[16] M. Redhead, “Incompleteness, Nonlocality and Realism,” Claredon Press, Oxford, 1989. doi:10.1119/1.16032
[17] R. W. Spekkens, “Contextuality for Preparations, Transformations, and Unsharp Measurements,” Physical Review A, Vol. 71, No. 5, 2005, pp. 1-17. doi:10.1103/PhysRevA.71.052108
[18] W. H. Zurek, “Environment-Assisted Invariance, Entanglement, and Probabilities in Quantum Physics,” Physical Review Letters, Vol. 90, No. 12, 2003, pp. 1-4. doi:10.1103/PhysRevLett.90.120404
[19] M. Schlosshauer and A. Fine, “On Zurek’s Derivation of the Born Rule,” Foundations of Physics, Vol. 35, No. 197, 2005, pp. 197-213. doi:10.1007/s10701-004-1941-6
[20] D. Deutsch, “Quantum Theory of Probability and Decisions,” Proceedings of the Royal Society of London A, Vol. 455, No. 1988, 1999, pp. 3129-3137. doi:10.1098/rspa.1999.0443
[21] W. H. Zurek, “Probabilities from Entanglement, Born’s Rule from Envariance,” Physical Review A, Vol. 71, 2005, pp. 1-29. doi:10.1103/PhysRevA.71.052105
[22] W. H. Zurek, “Entanglement Symmetry, Amplitudes, and Probabilities: Inverting Born’s Rule,” Physical Review Letters, Vol. 106, No. 25, 2011, pp 1-4. doi:10.1103/PhysRevLett.106.250402
[23] C. M. Caves, “Notes on Zurek’s Derivation of the Quantum Probability Rule,” 2005. http://info.phys.unm.edu/caves/reports/ZurekBornderivation.pdf
[24] U. Mohrhoff, “Probabilities from Envariance?” International Journal of Quantum Information, Vol. 2, No. 2, 2004, pp. 221-230. doi:10.1142/S0219749904000195
[25] H. Barnum, “No-Signalling-Based Version of Zurek’s Derivation of Quantum Probabilities: A Note on Environment-Assisted Invariance, Entanglement, and Probabilities in Quantum Physics,” 2003. arXiv: quant-ph/0312150
[26] H. Barnum, C. M. Caves, J. Finkelstein, C. A. Fuchs and R. Schack, “Quantum Probability from Decision Theory?” Proceedings of the Royal Society of London A, Vol. 456, No. 1997, 2000, pp. 1175-1182. doi:10.1098/rspa.2000.0557
[27] S. Saunders, “Derivation of the Born Rule from Operational Assumptions,” Proceedings of the Royal Society of London A, Vol. 460, No. 2046, 2004, pp. 1-18. doi:10.1098/rspa.2003.1230
[28] D. Wallace, “Everettian Rationality: Defending Deutsch’s approach to probability in the Everett interpretation,” Studies in History and Philosophy of Modern Physics, Vol. 34, No. 3, 2003, pp. 415-438. doi:10.1016/S1355-2198(03)00036-4
[29] W. H. Zurek, “Decoherence, Einselection, and the Quantum Origins of the Classical,” Reviews of Moder Physics, Vol. 75, No. 3, 2003, pp. 715-775. doi:10.1103/RevModPhys.75.715
[30] W. H. Zurek, “Quantum Darwinism and Envariance,” 2003. arXiv: quant-ph/0308163
[31] C. Cohen-Tannoudji, B. Diu and F. Lalo?, “Quantum Mechanics,” Hermann and Wiley, Paris, 1977.
[32] N. Zettili, “Quantum Mechanics, Concepts and Applications,” Wiley, Chichester, 2001.
[33] W. Greiner, “Quantum Mechanics, An Introduction,” Springer-Verlag, Berlin, 2000.
[34] A. Galindo and P. Pascual, “Quantum Mechanics I,” Springer-Verlag, Berlin, 1990. doi:10.1007/978-3-642-83854-5_2
[35] M. Kuczma, “An Introduction to the Theory of Functional Equations and Inequalities,” Birkh?user, Basel, 2009. doi:10.1007/978-3-7643-8749-5
[36] J. J. Sakurai, “Modern Quantum Mechanics,” Addison-Wesley, San Francisco, 1994.

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.